Esempio n. 1
0
def session(dataset_path, train_path='', test_path=''):
    '''
    节点连接
    :param dataset_path: 数据集路径
    :param train_path: 训练集数据路径,默认为空
    :param test_path: 测试集数据路径,默认为空
    :return: None
    '''
    #导入数据集
    dataset = LoadFile(p=dataset_path)
    # dataset = guiyi(dataset)
    dataset = onehot(dataset)

    g = tf.Graph()
    with g.as_default():
        with tf.name_scope('placeholder'):
            x_f = tf.placeholder(dtype=tf.float32, shape=[None, 4], name='x_f')
            x_l = tf.placeholder(dtype=tf.float32,
                                 shape=[None, 100],
                                 name='x_l')
            y = tf.placeholder(dtype=tf.float32, shape=[None, 3], name='y')
            learning_rate = tf.placeholder(dtype=tf.float32, name='lr')
            is_training = tf.placeholder(dtype=tf.bool, name='is_training')
        output = layers(x_f=x_f, x_l=x_l, is_training=is_training)
        with tf.name_scope('prediction'):
            # loss = -tf.reduce_mean(y * tf.log(output), name='loss')
            loss = tf.reduce_mean(
                tf.keras.losses.categorical_crossentropy(y_true=y,
                                                         y_pred=output))
            opt = tf.train.GradientDescentOptimizer(
                learning_rate=learning_rate).minimize(loss)
            acc = tf.reduce_mean(tf.cast(
                tf.equal(tf.keras.backend.argmax(output, axis=1),
                         tf.keras.backend.argmax(y, axis=1)), tf.float32),
                                 name='pred')
        with tf.name_scope('etc'):
            init = tf.global_variables_initializer()
            gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
    with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options),
                    graph=g) as sess:
        sess.run(init)
        #划分训练集和测试集
        train_data, test_data = spliting(dataset, 3000)
        for i in range(6000):  #6000
            for data in input(dataset=train_data, batch_size=500):
                _ = sess.run(opt,
                             feed_dict={
                                 x_f: data[:, :4],
                                 x_l: data[:, 4:-3],
                                 y: data[:, -3:],
                                 learning_rate: 1e-2,
                                 is_training: False
                             })
                if i % 100 == 0:
                    loss_ = sess.run(loss,
                                     feed_dict={
                                         x_f: data[:, :4],
                                         x_l: data[:, 4:-3],
                                         y: data[:, -3:],
                                         is_training: False
                                     })
                    acc_1 = sess.run(acc,
                                     feed_dict={
                                         x_f: data[:, :4],
                                         x_l: data[:, 4:-3],
                                         y: data[:, -3:],
                                         is_training: False
                                     })
            if i % 100 == 0:
                acc_2 = sess.run(acc,
                                 feed_dict={
                                     x_f: test_data[:, :4],
                                     x_l: test_data[:, 4:-3],
                                     y: test_data[:, -3:],
                                     is_training: False
                                 })
                print('第%s轮训练集损失函数值为: %s  训练集准确率为: %s  测试集准确率为: %s' %
                      (i, loss_, acc_1, acc_2))

        tf.summary.FileWriter('log/first_graph', sess.graph)
Esempio n. 2
0
def session(dataset_path, train_path='', test_path=''):
    '''
    节点连接
    :param dataset_path: 数据集路径
    :param train_path: 训练集数据路径,默认为空
    :param test_path: 测试集数据路径,默认为空
    :return: None
    '''
    #导入数据集
    dataset = LoadFile(p=dataset_path)
    g1 = tf.Graph()
    with g1.as_default():
        with tf.name_scope('placeholder'):
            x_f = tf.placeholder(dtype=tf.float32, shape=[None, 4], name='x_f')
            x_l = tf.placeholder(dtype=tf.float32,
                                 shape=[None, 100],
                                 name='x_l')
            y = tf.placeholder(dtype=tf.float32, shape=[None, 1], name='y')
            learning_rate = tf.placeholder(dtype=tf.float32, name='lr')
            is_training = tf.placeholder(dtype=tf.bool, name='is_training')
        # output = res_regression(x_f=x_f, x_l=x_l, is_training=is_training)
        output = cnnlstm_regression(x_f=x_f, x_l=x_l, is_training=is_training)
        with tf.name_scope('prediction'):
            loss = tf.reduce_mean(tf.square(output - y))
            opt = tf.train.GradientDescentOptimizer(
                learning_rate=learning_rate).minimize(loss)
            # opt = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss)
            acc1 = acc_regression(Threshold=0.1, y_true=y, y_pred=output)
            acc2 = acc_regression(Threshold=0.16, y_true=y, y_pred=output)
            acc3 = acc_regression(Threshold=0.2, y_true=y, y_pred=output)
            acc4 = acc_regression(Threshold=0.3, y_true=y, y_pred=output)
        with tf.name_scope('etc'):
            init = tf.global_variables_initializer()
            gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
    with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options),
                    graph=g1) as sess:
        sess.run(init)
        # 划分训练集和测试集
        train_data, test_data = spliting(dataset, 3369)
        for i in range(60000):  #20000
            for data in input(dataset=train_data, batch_size=1000):
                _ = sess.run(opt,
                             feed_dict={
                                 x_f: data[:, :4],
                                 x_l: data[:, 4:-1],
                                 y: data[:, -1][:, np.newaxis],
                                 learning_rate: 1e-2,
                                 is_training: False
                             })
                if i % 100 == 0:
                    loss_ = sess.run(loss,
                                     feed_dict={
                                         x_f: data[:, :4],
                                         x_l: data[:, 4:-1],
                                         y: data[:, -1][:, np.newaxis],
                                         is_training: False
                                     })
                    acc_1 = sess.run(acc1,
                                     feed_dict={
                                         x_f: data[:, :4],
                                         x_l: data[:, 4:-1],
                                         y: data[:, -1][:, np.newaxis],
                                         is_training: False
                                     })
                    acc_2 = sess.run(acc2,
                                     feed_dict={
                                         x_f: data[:, :4],
                                         x_l: data[:, 4:-1],
                                         y: data[:, -1][:, np.newaxis],
                                         is_training: False
                                     })
                    acc_3 = sess.run(acc3,
                                     feed_dict={
                                         x_f: data[:, :4],
                                         x_l: data[:, 4:-1],
                                         y: data[:, -1][:, np.newaxis],
                                         is_training: False
                                     })
                    acc_4 = sess.run(acc4,
                                     feed_dict={
                                         x_f: data[:, :4],
                                         x_l: data[:, 4:-1],
                                         y: data[:, -1][:, np.newaxis],
                                         is_training: False
                                     })
            if i % 100 == 0:
                acc_5 = sess.run(acc1,
                                 feed_dict={
                                     x_f: test_data[:, :4],
                                     x_l: test_data[:, 4:-1],
                                     y: test_data[:, -1][:, np.newaxis],
                                     is_training: False
                                 })
                acc_6 = sess.run(acc2,
                                 feed_dict={
                                     x_f: test_data[:, :4],
                                     x_l: test_data[:, 4:-1],
                                     y: test_data[:, -1][:, np.newaxis],
                                     is_training: False
                                 })
                acc_7 = sess.run(acc3,
                                 feed_dict={
                                     x_f: test_data[:, :4],
                                     x_l: test_data[:, 4:-1],
                                     y: test_data[:, -1][:, np.newaxis],
                                     is_training: False
                                 })
                acc_8 = sess.run(acc4,
                                 feed_dict={
                                     x_f: test_data[:, :4],
                                     x_l: test_data[:, 4:-1],
                                     y: test_data[:, -1][:, np.newaxis],
                                     is_training: False
                                 })
                print(
                    '第%s轮训练集损失函数值为: %s  训练集准确率为: %s:%s %s:%s %s:%s %s:%s  测试集准确率为: %s:%s %s:%s %s:%s %s:%s'
                    % (i, loss_, 0.1, acc_1, 0.16, acc_2, 0.2, acc_3, 0.3,
                       acc_4, 0.1, acc_5, 0.16, acc_6, 0.2, acc_7, 0.3, acc_8))
        tf.summary.FileWriter('log/regression_cnnlstm', sess.graph)
        # 保存模型到文件当前脚本文件路径下的pb格式
        saving_model = SaveImport_model(
            sess_ori=sess,
            file_suffix=r'/cnnlstm',
            ops=(output, x_f, x_l, is_training),
            usefulplaceholder_count=4,
            pb_file_path=r'/home/xiaosong/桌面/regression_cnnlstm')
        saving_model.save_pb()
Esempio n. 3
0
def session(dataset_path, train_path='', test_path=''):
    '''
    节点连接
    :param dataset_path: 数据集路径
    :param train_path: 训练集数据路径,默认为空
    :param test_path: 测试集数据路径,默认为空
    :return: None
    '''
    #导入数据集
    dataset = LoadFile(p=dataset_path)
    g1 = tf.Graph()
    with g1.as_default():
        with tf.name_scope('placeholder'):
            x_f = tf.placeholder(dtype=tf.float32, shape=[None, 4], name='x_f')
            x_l = tf.placeholder(dtype=tf.float32,
                                 shape=[None, 100],
                                 name='x_l')
            y = tf.placeholder(dtype=tf.float32, shape=[None, 1], name='y')
            learning_rate = tf.placeholder(dtype=tf.float32, name='lr')
            is_training = tf.placeholder(dtype=tf.bool, name='is_training')
        # output = res_regression(x_f=x_f, x_l=x_l, is_training=is_training)
        output = cnnlstm_regression(x_f=x_f, x_l=x_l, is_training=is_training)
        with tf.name_scope('prediction'):
            loss = tf.reduce_mean(tf.square(output - y))
            opt = tf.train.GradientDescentOptimizer(
                learning_rate=learning_rate).minimize(loss)
            # opt = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss)
            acc = acc_regression(Threshold=0.1, y_true=y, y_pred=output)
        with tf.name_scope('etc'):
            init = tf.global_variables_initializer()
            gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
    with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options),
                    graph=g1) as sess:
        sess.run(init)
        # 划分训练集和测试集
        train_data, test_data = spliting(dataset, 2269)
        for i in range(2000):  #20000
            for data in input(dataset=train_data, batch_size=1000):
                _ = sess.run(opt,
                             feed_dict={
                                 x_f: data[:, :4],
                                 x_l: data[:, 4:-1],
                                 y: data[:, -1][:, np.newaxis],
                                 learning_rate: 1e-2,
                                 is_training: False
                             })
                if i % 100 == 0:
                    loss_ = sess.run(loss,
                                     feed_dict={
                                         x_f: data[:, :4],
                                         x_l: data[:, 4:-1],
                                         y: data[:, -1][:, np.newaxis],
                                         is_training: False
                                     })
                    acc_1 = sess.run(acc,
                                     feed_dict={
                                         x_f: data[:, :4],
                                         x_l: data[:, 4:-1],
                                         y: data[:, -1][:, np.newaxis],
                                         is_training: False
                                     })
            if i % 100 == 0:
                acc_2 = sess.run(acc,
                                 feed_dict={
                                     x_f: test_data[:, :4],
                                     x_l: test_data[:, 4:-1],
                                     y: test_data[:, -1][:, np.newaxis],
                                     is_training: False
                                 })
                print('第%s轮训练集损失函数值为: %s  训练集准确率为: %s  测试集准确率为: %s' %
                      (i, loss_, acc_1, acc_2))
			c.append(instance.getData()[(int(child)-1)][e[splitcase].index(min(e[splitcase]))])
			children.append(c)
		
		index = 0
		f1 = open(output,"w")
		line = ""
		for each in nodes:
			if each.split(" ")[0] == name:
				pass
			else:
				line = line + each +"\n"


		splitnames = ""
		for child in breakset(children):
			z = name+str(index)
			splitnames= splitnames+z+" "
			for each in child:
				z=z+" "+ each[0]
			line = line + z+"\n"
			index=index+1

		line = line.strip("\n")
		f1.write(line)
		f1.close()
		print "Partition",name,"was replaced with partitions",splitnames,"using Feature ",e[splitcase].index(min(e[splitcase]))+1


if __name__ == '__main__':
	instance = id.input()
	main(instance)