def __init__(self, scratch_dir, workspace_url, callback_url, srv_wiz_url, provenance): self.scratch_dir = scratch_dir self.workspace_url = workspace_url self.callback_url = callback_url self.srv_wiz_url = srv_wiz_url self.provenance = provenance # from the provenance, extract out the version to run by exact hash if possible self.my_version = 'release' if len(provenance) > 0: if 'subactions' in provenance[0]: self.my_version = self.get_version_from_subactions( 'kb_Bwa', provenance[0]['subactions']) print('Running kb_Bwa version = ' + self.my_version) self.ws = Workspace(self.workspace_url) self.bwa = BwaRunner(self.scratch_dir) self.parallel_runner = KBParallel(self.callback_url) self.qualimap = kb_QualiMap(self.callback_url)
class BwaAligner: def __init__(self, scratch_dir, workspace_url, callback_url, srv_wiz_url, provenance): self.scratch_dir = scratch_dir self.workspace_url = workspace_url self.callback_url = callback_url self.srv_wiz_url = srv_wiz_url self.provenance = provenance # from the provenance, extract out the version to run by exact hash if possible self.my_version = 'release' if len(provenance) > 0: if 'subactions' in provenance[0]: self.my_version = self.get_version_from_subactions( 'kb_Bwa', provenance[0]['subactions']) print('Running kb_Bwa version = ' + self.my_version) self.ws = Workspace(self.workspace_url) self.bwa = BwaRunner(self.scratch_dir) self.parallel_runner = KBParallel(self.callback_url) self.qualimap = kb_QualiMap(self.callback_url) def get_version_from_subactions(self, module_name, subactions): # go through each sub action looking for if not subactions: return 'release' # default to release if we can't find anything for sa in subactions: if 'name' in sa: if sa['name'] == module_name: # local-docker-image implies that we are running in kb-test, so return 'dev' if sa['commit'] == 'local-docker-image': return 'dev' # to check that it is a valid hash, make sure it is the right # length and made up of valid hash characters if re.match('[a-fA-F0-9]{40}$', sa['commit']): return sa['commit'] # again, default to setting this to release return 'release' def align(self, params): validated_params = self.validate_params(params) input_info = self.determine_input_info(validated_params) # input info provides information on the input and tells us if we should # run as a single_library or as a set: # input_info = {'run_mode': '', 'info': [..], 'ref': '55/1/2'} assembly_or_genome_ref = validated_params['assembly_or_genome_ref'] if input_info['run_mode'] == 'single_library': if 'output_alignment_name' not in validated_params: suffix = '_alignment' if 'output_alignment_suffix' in validated_params: suffix = validated_params['output_alignment_suffix'] validated_params[ 'output_alignment_name'] = input_info['info'][1] + suffix single_lib_result = self.single_reads_lib_run( input_info, assembly_or_genome_ref, validated_params, create_report=validated_params['create_report']) return single_lib_result if input_info['run_mode'] == 'sample_set': reads = self.fetch_reads_refs_from_sampleset( input_info['ref'], input_info['info'], validated_params) self.build_bwa_index(assembly_or_genome_ref, validated_params['output_workspace']) print('Running on set of reads=') pprint(reads) tasks = [] for r in reads: tasks.append( self.build_single_execution_task( r['ref'], params, r['alignment_output_name'], r['condition'])) batch_run_params = { 'tasks': tasks, 'runner': 'parallel', 'max_retries': 2 } if validated_params['concurrent_local_tasks'] is not None: batch_run_params['concurrent_local_tasks'] = validated_params[ 'concurrent_local_tasks'] if validated_params['concurrent_njsw_tasks'] is not None: batch_run_params['concurrent_njsw_tasks'] = validated_params[ 'concurrent_njsw_tasks'] results = self.parallel_runner.run_batch(batch_run_params) print('Batch run results=') pprint(results) batch_result = self.process_batch_result(results, validated_params, reads, input_info['info']) return batch_result raise ('Improper run mode') def build_single_execution_task(self, reads_lib_ref, params, output_name, condition): task_params = copy.deepcopy(params) task_params['input_ref'] = reads_lib_ref task_params['output_alignment_name'] = output_name task_params['create_report'] = 0 task_params['condition_label'] = condition return { 'module_name': 'kb_Bwa', 'function_name': 'align_reads_to_assembly_app', 'version': self.my_version, 'parameters': task_params } def single_reads_lib_run(self, read_lib_info, assembly_or_genome_ref, validated_params, create_report=False, bwa_index_info=None): ''' run on one reads ''' # download reads and prepare any bwa index files input_configuration = self.prepare_single_run( read_lib_info, assembly_or_genome_ref, bwa_index_info, validated_params['output_workspace']) # run the actual program run_output_info = self.run_bwa_align_cli(input_configuration, validated_params) # process the result and save the output upload_results = self.save_read_alignment_output( run_output_info, input_configuration, validated_params) run_output_info['upload_results'] = upload_results report_info = None if create_report: report_info = self.create_report_for_single_run( run_output_info, input_configuration, validated_params) self.clean(run_output_info) return {'output_info': run_output_info, 'report_info': report_info} def build_bwa_index(self, assembly_or_genome_ref, ws_for_cache): bwaIndexBuilder = BwaIndexBuilder(self.scratch_dir, self.workspace_url, self.callback_url, self.srv_wiz_url, self.provenance) return bwaIndexBuilder.get_index({ 'ref': assembly_or_genome_ref, 'ws_for_cache': ws_for_cache }) def prepare_single_run(self, input_info, assembly_or_genome_ref, bwa_index_info, ws_for_cache): ''' Given a reads ref and an assembly, setup the bwa index ''' # first setup the bwa index of the assembly input_configuration = {'bwa_index_info': bwa_index_info} if not bwa_index_info: bwaIndexBuilder = BwaIndexBuilder(self.scratch_dir, self.workspace_url, self.callback_url, self.srv_wiz_url, self.provenance) index_result = bwaIndexBuilder.get_index({ 'ref': assembly_or_genome_ref, 'ws_for_cache': ws_for_cache }) input_configuration['bwa_index_info'] = index_result # next download the reads read_lib_ref = input_info['ref'] read_lib_info = input_info['info'] reads_params = { 'read_libraries': [read_lib_ref], 'interleaved': 'false', 'gzipped': None } ru = ReadsUtils(self.callback_url) reads = ru.download_reads(reads_params)['files'] input_configuration['reads_lib_type'] = self.get_type_from_obj_info( read_lib_info).split('.')[1] input_configuration['reads_files'] = reads[read_lib_ref] input_configuration['reads_lib_ref'] = read_lib_ref return input_configuration def run_bwa_align_cli(self, input_configuration, validated_params): # pprint('======== input_configuration =====') # pprint(input_configuration) options = [] run_output_info = {} # set the bwa index location bt2_index_dir = input_configuration['bwa_index_info']['output_dir'] bt2_index_basename = input_configuration['bwa_index_info'][ 'index_files_basename'] #options.extend(['-x', bt2_index_basename]) reference = os.path.join(bt2_index_dir, bt2_index_basename) options_r = [] options_l = [] options.append(reference) options_r.append(reference) options_l.append(reference) output_dir = os.path.join( self.scratch_dir, 'bwa_alignment_output_' + str(int(time.time() * 10000))) output_sam_file = os.path.join(output_dir, 'reads_alignment.sam') os.makedirs(output_dir) # set the input reads sam_parameter = '' if input_configuration['reads_lib_type'] == 'SingleEndLibrary': options.extend( ['-0', input_configuration['reads_files']['files']['fwd']]) run_output_info['library_type'] = 'single_end' output_sai_file = os.path.join(output_dir, bt2_index_basename) + ".sai" options.extend(["-f", output_sai_file]) self.bwa.run('aln', options, cwd=bt2_index_dir) sam_parameter = 'samse' options2 = [] options2.append(reference) options2.append(output_sai_file) options2.append(input_configuration['reads_files']['files']['fwd']) options2.extend(["-f", output_sam_file]) self.bwa.run(sam_parameter, options2, cwd=bt2_index_dir) elif input_configuration['reads_lib_type'] == 'PairedEndLibrary': options_l.extend( ['-1', input_configuration['reads_files']['files']['fwd']]) output_l_sai_file = os.path.join(output_dir, bt2_index_basename) + "_l.sai" options_l.extend(["-f", output_l_sai_file]) self.bwa.run('aln', options_l, cwd=bt2_index_dir) options_r.extend( ['-2', input_configuration['reads_files']['files']['rev']]) output_r_sai_file = os.path.join(output_dir, bt2_index_basename) + "_r.sai" options_r.extend(["-f", output_r_sai_file]) self.bwa.run('aln', options_r, cwd=bt2_index_dir) sam_parameter = 'sampe' options2 = [] options2.append(reference) options2.append(output_r_sai_file) options2.append(output_l_sai_file) options2.append(input_configuration['reads_files']['files']['rev']) options2.append(input_configuration['reads_files']['files']['fwd']) options2.extend(["-f", output_sam_file]) self.bwa.run(sam_parameter, options2, cwd=bt2_index_dir) run_output_info['library_type'] = 'paired_end' ''' align = bash('bwa aln -I -t 8 reference.fa reads.txt > out.sai') sam = bash('bwa samse reference.fa out.sai reads.txt > out.sam') ''' # setup the output file name # options.extend(['-S', output_sam_file]) run_output_info['output_sam_file'] = output_sam_file run_output_info['output_dir'] = output_dir return run_output_info def save_read_alignment_output(self, run_output_info, input_configuration, validated_params): rau = ReadsAlignmentUtils(self.callback_url) destination_ref = validated_params[ 'output_workspace'] + '/' + validated_params[ 'output_alignment_name'] condition = 'unknown' if 'condition_label' in validated_params: condition = validated_params['condition_label'] upload_params = { 'file_path': run_output_info['output_sam_file'], 'destination_ref': destination_ref, 'read_library_ref': input_configuration['reads_lib_ref'], 'assembly_or_genome_ref': validated_params['assembly_or_genome_ref'], 'condition': condition } upload_results = rau.upload_alignment(upload_params) return upload_results def clean(self, run_output_info): ''' Not really necessary on a single run, but if we are running multiple local subjobs, we should clean up files that have already been saved back up to kbase ''' pass def create_report_for_single_run(self, run_output_info, input_configuration, validated_params): # first run qualimap qualimap_report = self.qualimap.run_bamqc( {'input_ref': run_output_info['upload_results']['obj_ref']}) qc_result_zip_info = qualimap_report['qc_result_zip_info'] # create report report_text = 'Ran on a single reads library.\n\n' alignment_info = self.get_obj_info( run_output_info['upload_results']['obj_ref']) report_text = 'Created ReadsAlignment: ' + str( alignment_info[1]) + '\n' report_text = ' ' + run_output_info[ 'upload_results']['obj_ref'] + '\n' kbr = KBaseReport(self.callback_url) report_info = kbr.create_extended_report({ 'message': report_text, 'objects_created': [{ 'ref': run_output_info['upload_results']['obj_ref'], 'description': 'ReadsAlignment' }], 'report_object_name': 'kb_Bwa_' + str(uuid.uuid4()), 'direct_html_link_index': 0, 'html_links': [{ 'shock_id': qc_result_zip_info['shock_id'], 'name': qc_result_zip_info['index_html_file_name'], 'label': qc_result_zip_info['name'] }], 'workspace_name': validated_params['output_workspace'] }) return { 'report_name': report_info['name'], 'report_ref': report_info['ref'] } def process_batch_result(self, batch_result, validated_params, reads, input_set_info): n_jobs = len(batch_result['results']) n_success = 0 n_error = 0 ran_locally = 0 ran_njsw = 0 # reads alignment set items items = [] objects_created = [] for k in range(0, len(batch_result['results'])): job = batch_result['results'][k] result_package = job['result_package'] if job['is_error']: n_error += 1 else: n_success += 1 print(result_package['result']) print(result_package['result'][0]) print(result_package['result'][0]['output_info']) output_info = result_package['result'][0]['output_info'] ra_ref = output_info['upload_results']['obj_ref'] # Note: could add a label to the alignment here? items.append({'ref': ra_ref, 'label': reads[k]['condition']}) objects_created.append({'ref': ra_ref}) if result_package['run_context']['location'] == 'local': ran_locally += 1 if result_package['run_context']['location'] == 'njsw': ran_njsw += 1 # Save the alignment set alignment_set_data = {'description': '', 'items': items} alignment_set_save_params = { 'data': alignment_set_data, 'workspace': validated_params['output_workspace'], 'output_object_name': str(input_set_info[1]) + validated_params['output_obj_name_suffix'] } set_api = SetAPI(self.srv_wiz_url) save_result = set_api.save_reads_alignment_set_v1( alignment_set_save_params) print('Saved ReadsAlignment=') pprint(save_result) objects_created.append({ 'ref': save_result['set_ref'], 'description': 'Set of all reads alignments generated' }) set_name = save_result['set_info'][1] # run qualimap qualimap_report = self.qualimap.run_bamqc( {'input_ref': save_result['set_ref']}) qc_result_zip_info = qualimap_report['qc_result_zip_info'] # create the report report_text = 'Ran on SampleSet or ReadsSet.\n\n' report_text = 'Created ReadsAlignmentSet: ' + str(set_name) + '\n\n' report_text += 'Total ReadsLibraries = ' + str(n_jobs) + '\n' report_text += ' Successful runs = ' + str(n_success) + '\n' report_text += ' Failed runs = ' + str(n_error) + '\n' report_text += ' Ran on main node = ' + str(ran_locally) + '\n' report_text += ' Ran on remote worker = ' + str(ran_njsw) + '\n\n' print('Report text=') print(report_text) kbr = KBaseReport(self.callback_url) report_info = kbr.create_extended_report({ 'message': report_text, 'objects_created': objects_created, 'report_object_name': 'kb_Bwa_' + str(uuid.uuid4()), 'direct_html_link_index': 0, 'html_links': [{ 'shock_id': qc_result_zip_info['shock_id'], 'name': qc_result_zip_info['index_html_file_name'], 'label': qc_result_zip_info['name'] }], 'workspace_name': validated_params['output_workspace'] }) result = { 'report_info': { 'report_name': report_info['name'], 'report_ref': report_info['ref'] } } result['batch_output_info'] = batch_result return result def validate_params(self, params): validated_params = {} required_string_fields = [ 'input_ref', 'assembly_or_genome_ref', 'output_obj_name_suffix', 'output_workspace' ] for field in required_string_fields: if field in params and params[field]: validated_params[field] = params[field] else: raise ValueError('"' + field + '" field required to run bwa aligner app') optional_fields = [ 'quality_score', 'alignment_type', 'preset_options', 'trim5', 'trim3', 'condition_label', 'np', 'minins', 'maxins', 'output_alignment_suffix', 'output_alignment_name' ] for field in optional_fields: if field in params: if params[field] is not None: validated_params[field] = params[field] validated_params['create_report'] = True if 'create_report' in params and params['create_report'] is not None: if int(params['create_report']) == 1: validated_params['create_report'] = True elif int(params['create_report']) == 0: validated_params['create_report'] = False else: raise ValueError( '"create_report" field, if present, should be set to a boolean value: 0 or 1' ) validated_params['concurrent_local_tasks'] = None validated_params['concurrent_njsw_tasks'] = None if 'concurrent_local_tasks' in params and params[ 'concurrent_local_tasks'] is not None: validated_params['concurrent_local_tasks'] = int( params['concurrent_local_tasks']) if 'concurrent_njsw_tasks' in params and params[ 'concurrent_njsw_tasks'] is not None: validated_params['concurrent_njsw_tasks'] = int( params['concurrent_njsw_tasks']) return validated_params def fetch_reads_refs_from_sampleset(self, ref, info, validated_params): """ Note: adapted from kbaseapps/kb_hisat2 - file_util.py From the given object ref, return a list of all reads objects that are a part of that object. E.g., if ref is a ReadsSet, return a list of all PairedEndLibrary or SingleEndLibrary refs that are a member of that ReadsSet. This is returned as a list of dictionaries as follows: { "ref": reads object reference, "condition": condition string associated with that reads object } The only one required is "ref", all other keys may or may not be present, based on the reads object or object type in initial ref variable. E.g. a RNASeqSampleSet might have condition info for each reads object, but a single PairedEndLibrary may not have that info. If ref is already a Reads library, just returns a list with ref as a single element. """ obj_type = self.get_type_from_obj_info(info) refs = list() refs_for_ws_info = list() if "KBaseSets.ReadsSet" in obj_type or "KBaseRNASeq.RNASeqSampleSet" in obj_type: print("Looking up reads references in ReadsSet object") set_api = SetAPI(self.srv_wiz_url) reads_set = set_api.get_reads_set_v1({ 'ref': ref, 'include_item_info': 0, 'include_set_item_ref_paths': 1 }) for reads in reads_set["data"]["items"]: refs.append({ 'ref': reads['ref_path'], 'condition': reads['label'] }) refs_for_ws_info.append({'ref': reads['ref_path']}) else: raise ValueError("Unable to fetch reads reference from object {} " "which is a {}".format(ref, obj_type)) # get object info so we can name things properly infos = self.ws.get_object_info3({'objects': refs_for_ws_info})['infos'] name_ext = '_alignment' if 'output_alignment_suffix' in validated_params \ and validated_params['output_alignment_suffix'] is not None: ext = validated_params['output_alignment_suffix'].replace(' ', '') if ext: name_ext = ext unique_name_lookup = {} for k in range(0, len(refs)): refs[k]['info'] = infos[k] name = infos[k][1] if name not in unique_name_lookup: unique_name_lookup[name] = 1 else: unique_name_lookup[name] += 1 name = name + '_' + str(unique_name_lookup[name]) name = name + name_ext refs[k]['alignment_output_name'] = name return refs def determine_input_info(self, validated_params): ''' get info on the input_ref object and determine if we run once or run on a set ''' info = self.get_obj_info(validated_params['input_ref']) obj_type = self.get_type_from_obj_info(info) if obj_type in [ 'KBaseAssembly.PairedEndLibrary', 'KBaseAssembly.SingleEndLibrary', 'KBaseFile.PairedEndLibrary', 'KBaseFile.SingleEndLibrary' ]: return { 'run_mode': 'single_library', 'info': info, 'ref': validated_params['input_ref'] } if obj_type == 'KBaseRNASeq.RNASeqSampleSet': return { 'run_mode': 'sample_set', 'info': info, 'ref': validated_params['input_ref'] } if obj_type == 'KBaseSets.ReadsSet': return { 'run_mode': 'sample_set', 'info': info, 'ref': validated_params['input_ref'] } raise ValueError('Object type of input_ref is not valid, was: ' + str(obj_type)) def get_type_from_obj_info(self, info): return info[2].split('-')[0] def get_obj_info(self, ref): return self.ws.get_object_info3({'objects': [{ 'ref': ref }]})['infos'][0]
def run_batch(self, reads_refs, params): """ Runs HISAT2 in batch mode. reads_refs should be a list of dicts, where each looks like the following: { "ref": reads object reference, "condition": condition for that ref (string) } """ # build task list and send it to KBParallel tasks = list() set_name = get_object_names( [params["sampleset_ref"]], self.workspace_url)[params["sampleset_ref"]] for idx, reads_ref in enumerate(reads_refs): single_param = dict(params) # need a copy of the params single_param["build_report"] = 0 single_param["sampleset_ref"] = reads_ref["ref"] if "condition" in reads_ref: single_param["condition"] = reads_ref["condition"] else: single_param["condition"] = "unspecified" tasks.append({ "module_name": "kb_hisat2", "function_name": "run_hisat2", "version": self.my_version, "parameters": single_param }) # UNCOMMENT BELOW FOR LOCAL TESTING batch_run_params = { "tasks": tasks, "runner": "parallel", # "concurrent_local_tasks": 3, # "concurrent_njsw_tasks": 0, "max_retries": 2 } parallel_runner = KBParallel(self.callback_url) results = parallel_runner.run_batch(batch_run_params)["results"] alignment_items = list() alignments = dict() for idx, result in enumerate(results): # idx of the result is the same as the idx of the inputs AND reads_refs if result["is_error"] != 0: raise RuntimeError( "Failed a parallel run of HISAT2! {}".format( result["result_package"]["error"])) reads_ref = tasks[idx]["parameters"]["sampleset_ref"] alignment_items.append({ "ref": result["result_package"]["result"][0]["alignment_objs"] [reads_ref]["ref"], "label": reads_refs[idx].get("condition", params.get("condition", "unspecified")) }) alignments[reads_ref] = result["result_package"]["result"][0][ "alignment_objs"][reads_ref] # build the final alignment set output_ref = self.upload_alignment_set( alignment_items, set_name + params["alignmentset_suffix"], params["ws_name"]) return (alignments, output_ref)