def load_histogram(obj, n):
    hist_path = os.path.join(base_path, "{}_{}_hist.npy".format(obj, n))

    if os.path.exists(hist_path):
        blob_histogram = numpy.load(hist_path)
    else:
        color = numpy.load(os.path.join(base_path, "{}_{}_color.npy".format(obj, n)))
        depth_uv = numpy.load(os.path.join(base_path, "{}_{}_depth_uv.npy".format(obj, n)))

        if obj == "shelf":
            mask = numpy.ones((color.shape[0], color.shape[1]), dtype=numpy.bool)
        else:
            mask = numpy.load(os.path.join(base_path, "{}_{}_mask.npy".format(obj, n)))

        color2 = uvtexture(color, depth_uv)
        color_valid_mask = ~invalid_mask(depth_uv)
        blob_uv = [rgb2yuv(*rgb)[1:3] for rgb in color2[mask & color_valid_mask]]
        blob_histogram = make_uv_hist(blob_uv)

        numpy.save(hist_path, blob_histogram)

    return blob_histogram
Esempio n. 2
0
        cloud = numpy.load(os.path.join(base_path, "{}_{}_cloud.npy".format(obj, n)))

        # clean up the point cloud
        clean_mask = invalid_mask(cloud)
        clean_cloud = cloud[clean_mask]
        _, clean_cloud_aligned, _, clean_object_mask = shelf_subtract(
            shelf_cloud, clean_cloud, shelf, bin_bounds, downsample=1000
        )
        object_mask = numpy.zeros(cloud.shape[:2], dtype=numpy.bool)
        object_mask[clean_mask] = clean_object_mask

        clean_cloud_aligned_color = map(
            lambda x: x[0] + [x[1]],
            zip(
                clean_cloud_aligned[clean_object_mask].tolist(),
                uvtexture(color, depth_uv)[clean_mask][clean_object_mask].tolist(),
            ),
        )
        # debug_cloud([ clean_cloud_aligned_color ], world=world)
        # debug_cloud([ shelf_cloud, clean_cloud, clean_cloud_aligned ])
        # pcd.write(clean_cloud_aligned_color, open('/tmp/{}_{}.pcd'.format(self.knowledge_base.target_object, self.knowledge_base.target_bin), 'w'))

        # dilate the object mask
        from scipy.misc import imsave
        from scipy.ndimage.morphology import binary_dilation

        object_mask_dilated = binary_dilation(object_mask, iterations=2)

        # label connected components
        from scipy.ndimage.measurements import label
for obj in objects:
    print 'swtich to', obj

    histograms = []
    
    for n in range(6):
        print 'take', n,
               
        color = numpy.load(os.path.join(base_path, '{}_{}_color.npy'.format(obj, n)))
        depth_uv = numpy.load(os.path.join(base_path, '{}_{}_depth_uv.npy'.format(obj, n)))
        if obj == 'shelf':
            mask = numpy.ones((color.shape[0], color.shape[1]), dtype=numpy.bool)
        else:
            mask = numpy.load(os.path.join(base_path, '{}_{}_mask.npy'.format(obj, n)))
       
        color2 = uvtexture(color, depth_uv)
        color_valid_mask = ~invalid_mask(depth_uv)
        blob_uv = [ rgb2yuv(*rgb)[1:3] for rgb in color2[mask & color_valid_mask] ]

        if blob_uv:
            blob_histogram = make_uv_hist(blob_uv)
            histograms.append(blob_histogram)

            hist_path = os.path.join(base_path, '{}_{}_hist.npy'.format(obj, n))
            numpy.save(hist_path, blob_histogram)
            print 'histogram'
        else:
            print 'skipped'
    
    if histograms:
        composite_histogram = sum(histograms) / len(histograms)