def display(self, amount): pygame.init() screen = pygame.display.set_mode((740, 480)) black = (0, 0, 0) myfont = pygame.font.SysFont("comicsansms", 35) p_name = myfont.render('Gross amount', 4, black) amount = str(amount) price = myfont.render(amount, 4, black) Group = pygame.sprite.Group() f = Probe(530, 400) Group.add(f) while True: screen.fill((255, 255, 255)) screen.blit(p_name, (250, 300)) screen.blit(price, (480, 300)) for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() exit(0) elif event.type == pygame.MOUSEBUTTONDOWN: if f.rect.collidepoint(pygame.mouse.get_pos()): import interface z = interface.display() z.begin() Group.draw(screen) pygame.display.flip()
def fetch(entries): save = [] for entry in entries: field = entry[0] text = entry[1].get() save.append(text) if save[0] == 'admin' and save[1] == 'admin': a = interface.display() a.login()
def makeCloud(tweetObjs, window): stopwords = [ "&", "&", "a", "about", "above", "above", "across", "after", "afterwards", "again", "against", "all", "almost", "alone", "along", "already", "also", "although", "always", "am", "among", "amongst", "amoungst", "amount", "an", "and", "another", "any", "anyhow", "anyone", "anything", "anyway", "anywhere", "are", "around", "as", "at", "back", "be", "became", "because", "become", "becomes", "becoming", "been", "before", "beforehand", "behind", "being", "below", "beside", "besides", "between", "beyond", "bill", "both", "bottom", "but", "by", "call", "can", "cannot", "cant", "co", "con", "could", "couldnt", "cry", "de", "describe", "detail", "do", "done", "down", "due", "during", "each", "eg", "eight", "either", "eleven", "else", "elsewhere", "empty", "enough", "etc", "even", "ever", "every", "everyone", "everything", "everywhere", "except", "few", "fifteen", "fify", "fill", "find", "fire", "first", "five", "for", "former", "formerly", "forty", "found", "four", "from", "front", "full", "further", "get", "give", "go", "had", "has", "hasnt", "have", "he", "hence", "her", "here", "hereafter", "hereby", "herein", "hereupon", "hers", "herself", "him", "himself", "his", "how", "however", "hundred", "ie", "if", "in", "inc", "indeed", "interest", "into", "is", "it", "its", "itself", "keep", "last", "latter", "latterly", "least", "less", "ltd", "made", "many", "may", "me", "meanwhile", "might", "mill", "mine", "more", "moreover", "most", "mostly", "move", "much", "must", "my", "myself", "name", "namely", "neither", "never", "nevertheless", "next", "nine", "no", "nobody", "none", "noone", "nor", "not", "nothing", "now", "nowhere", "of", "off", "often", "on", "once", "one", "only", "onto", "or", "other", "others", "otherwise", "our", "ours", "ourselves", "out", "over", "own", "part", "per", "perhaps", "please", "put", "rather", "re", "same", "see", "seem", "seemed", "seeming", "seems", "serious", "several", "she", "should", "show", "side", "since", "sincere", "six", "sixty", "so", "some", "somehow", "someone", "something", "sometime", "sometimes", "somewhere", "still", "such", "system", "take", "ten", "than", "that", "the", "their", "them", "themselves", "then", "thence", "there", "thereafter", "thereby", "therefore", "therein", "thereupon", "these", "they", "thickv", "thin", "third", "this", "those", "though", "three", "through", "throughout", "thru", "thus", "to", "together", "too", "top", "toward", "towards", "twelve", "twenty", "two", "un", "under", "until", "up", "upon", "us", "very", "via", "was", "we", "well", "were", "what", "whatever", "when", "whence", "whenever", "where", "whereafter", "whereas", "whereby", "wherein", "whereupon", "wherever", "whether", "which", "while", "whither", "who", "whoever", "whole", "whom", "whose", "why", "will", "with", "within", "without", "would", "yet", "you", "your", "yours", "yourself", "yourselves", "the" ] tweets = [] for text in tweetObjs: tweets.append((str)(text["text"])) tweetsProcessed = [] #FILTERED TWEETS WITH STUFF LIKE STOPWORDS REMOVED # Extract the vocabulary of keywords # and put them into a dictionary vocab = dict() for eachTweet in tweets: filteredTweet = "" for term in eachTweet.split(): term = term.lower() #filter removing terms under 2char, in stopwords, and links if len(term) > 2 and term not in stopwords and not term.startswith( 'http'): filteredTweet = filteredTweet + ' ' + term if vocab.has_key(term): vocab[term] = vocab[term] + 1 else: vocab[term] = 1 tweetsProcessed.append(filteredTweet) # Remove terms whose frequencies are less than a threshold (e.g., 15) vocab = {term: freq for term, freq in vocab.items() if freq > 20} #sort of like x = x+1; term only gets added if its freq is > # in old vocab.items() # Generate an id (starting from 0) for each term in vocab vocab = {term: i for i, (term, freq) in enumerate(vocab.items())} # Generate X X = [] #basically, X = list of Ys #Ys = counts of which words got hit in a single tweet instance for text in tweets: #iterate through each tweet x = [0] * len(vocab) #x is now len(vocab) large #terms = list of terms that >2 in length in a tweet terms = [term for term in text.split() if len(term) > 2] for term in terms: # for each term in terms if vocab.has_key(term): x[vocab[term]] += 1 #increase that term's id by 1 X.append(x) ################################################################################ numberOfClusters = 5 # K-means clustering km = KMeans(n_clusters=numberOfClusters, n_init=100) # try 100 different initial centroids km.fit(X) #KMeans all those Ys #make a directory for cluster files (if it doesn't exist already subDirectory = "wordcloud" if not os.path.exists(subDirectory): os.makedirs(subDirectory) #open cluster files for writing clusterFilePtr = [] #set up cluster pointer array for i in range(0, numberOfClusters): filename = "cluster" + str(i) + "_data.txt" #put categorized tweets in the subdirectory clusterFilePtr.append(open(os.path.join(subDirectory, filename), "w")) counter = [] #counter for each cluster for i in range(0, numberOfClusters): counter.append(0) #write each tweet to the cluster file they belong to for i, cls in enumerate(km.labels_): clusterFilePtr[cls].write(tweetsProcessed[i] + "\n") counter[cls] += 1 #close cluster files for eachPtr in clusterFilePtr: eachPtr.close() print "Number of clusters:", len(counter) #print count of each cluster for i in range(0, len(counter)): print "cluster%d: %d" % (i, counter[i]) #####################################################wordcloud time # get all the words from each cluster for i in range(0, numberOfClusters): filename = "cluster" + str(i) + "_data.txt" wordball = [] wordball = open(os.path.join(subDirectory, filename)).read() wc = WordCloud().generate(wordball) #generate wordcloud picname = "cloud" + str(i) + ".png" wc.to_file(os.path.join(subDirectory, picname)) # store to file interface.display(window)
def bill(): import interface a = interface.display() a.begin() return