Esempio n. 1
0
    def _setup_residuals(self):

        self._residuals = ci.sqrt(self._weightings_vectorized) * \
            ci.veccat([ \

                self._discretization.optimization_variables["V"],
                self._discretization.optimization_variables["EPS_U"],

            ])
Esempio n. 2
0
    def _setup_residuals(self):

        self._residuals = ci.sqrt(self._weightings_vectorized) * \
            ci.veccat([ \

                self._discretization.optimization_variables["EPS_U"],
                self._discretization.optimization_variables["V"],

            ])
Esempio n. 3
0
    def standard_deviations(self):

        try:

            return ci.sqrt([abs(var) for var \
                in ci.diag(self.covariance_matrix)])

        except AttributeError:

            raise AttributeError('''
Standard deviations for the estimated parameters not yet computed.
Run compute_covariance_matrix() to do so.
''')
Esempio n. 4
0
    def _print_experimental_properties(self, covariance_matrix):

        np.set_printoptions(linewidth = 200, \
            formatter={'float': lambda x: format(x, ' 10.8e')})

        print("\nParameters p_i:")

        for k, pk in enumerate(self._pdata):

            print("    p_{0:<3} = {1} +/- {2}".format( \
                 k, pk, ci.sqrt(abs(ci.diag(covariance_matrix)[k]))))

        print("\nCovariance matrix for this setup:")

        print(np.atleast_2d(covariance_matrix))
Esempio n. 5
0
    def _print_experimental_properties(self, covariance_matrix):

        np.set_printoptions(linewidth = 200, \
            formatter={'float': lambda x: format(x, ' 10.8e')})

        print("\nParameters p_i:")

        for k, pk in enumerate(self._pdata):

            print("    p_{0:<3} = {1} +/- {2}".format( \
                 k, pk, ci.sqrt(abs(ci.diag(covariance_matrix)[k]))))

        print("\nCovariance matrix for this setup:")

        print(np.atleast_2d(covariance_matrix))
Esempio n. 6
0
    def standard_deviations(self):

        try:

            variances = []

            for k in range(ci.diag(self.covariance_matrix).numel()):

                variances.append(abs(ci.diag(self.covariance_matrix)[k]))

            standard_deviations = ci.sqrt(variances)

            return standard_deviations

            # return ci.sqrt([abs(var) for var \
            #     in ci.diag(self.covariance_matrix)])

        except AttributeError:

            raise AttributeError('''
Standard deviations for the estimated parameters not yet computed.
Run compute_covariance_matrix() to do so.
''')