Esempio n. 1
0
def est_connectivity(X, gm="Glasso", assume_centered=False):
    if gm == "QuicGlasso-CV":
        quic = QuicGraphicalLassoCV(cv=5)
        quic.fit(X)
        return quic.covariance_, quic.precision_, quic.lam_

    elif gm == "QuicGlasso-BIC":
        quic_bic = QuicGraphicalLassoEBIC(gamma=0)
        quic_bic.fit(X)
        return quic_bic.covariance_, quic_bic.precision_, quic_bic.lam_

    else:  # Default: Glasso
        glasso = GraphicalLassoCV(assume_centered=assume_centered, cv=5).fit(X)
        return glasso.covariance_, glasso.get_precision(), glasso.alpha_
Esempio n. 2
0
def quic_graph_lasso_ebic(X, gamma=0):
    """Run QuicGraphicalLassoEBIC with gamma.

    QuicGraphicalLassoEBIC is a convenience class.  Results should be identical to
    those obtained via quic_graph_lasso_ebic_manual.
    """
    print("QuicGraphicalLassoEBIC with:")
    print("   mode: path")
    print("   gamma: {}".format(gamma))
    model = QuicGraphicalLassoEBIC(lam=1.0, init_method="cov", gamma=gamma)
    model.fit(X)
    print("   len(path lams): {}".format(len(model.path_)))
    print("   lam_scale_: {}".format(model.lam_scale_))
    print("   lam_: {}".format(model.lam_))
    return model.covariance_, model.precision_, model.lam_
Esempio n. 3
0
def adaptive_graph_lasso(X, model_selector, method):
    """Run QuicGraphicalLassoCV or QuicGraphicalLassoEBIC as a two step adaptive fit
    with method of choice (currently: 'binary', 'inverse', 'inverse_squared').

    Compare the support and values to the model-selection estimator.
    """
    metric = "log_likelihood"
    print("Adaptive {} with:".format(model_selector))
    print("   adaptive-method: {}".format(method))
    if model_selector == "QuicGraphicalLassoCV":
        print("   metric: {}".format(metric))
        model = AdaptiveGraphicalLasso(
            estimator=QuicGraphicalLassoCV(
                cv=2,  # cant deal w more folds at small size
                n_refinements=6,
                init_method="cov",
                score_metric=metric,
                sc=spark.sparkContext,  # NOQA
            ),
            method=method,
        )

    elif model_selector == "QuicGraphicalLassoEBIC":
        model = AdaptiveGraphicalLasso(estimator=QuicGraphicalLassoEBIC(),
                                       method=method)
    model.fit(X)
    lam_norm_ = np.linalg.norm(model.estimator_.lam_)
    print("   ||lam_||_2: {}".format(lam_norm_))
    return model.estimator_.covariance_, model.estimator_.precision_, lam_norm_
Esempio n. 4
0
    def test_integration_quic_graphical_lasso_ebic(self, params_in, expected):
        """
        Just tests inputs/outputs (not validity of result).
        """
        X = datasets.load_diabetes().data
        ic = QuicGraphicalLassoEBIC(**params_in)
        ic.fit(X)

        result_vec = [
            np.linalg.norm(ic.covariance_),
            np.linalg.norm(ic.precision_)
        ]
        if isinstance(ic.lam_, float):
            result_vec.append(ic.lam_)
        elif isinstance(ic.lam_, np.ndarray):
            assert ic.lam_.shape == params_in["lam"].shape

        print(result_vec)
        assert_allclose(expected, result_vec, atol=1e-1, rtol=1e-1)
Esempio n. 5
0
def get_conn_matrix(time_series, conn_model, dir_path, node_size, smooth,
                    dens_thresh, network, ID, roi, min_span_tree, disp_filt,
                    parc, prune, atlas_select, uatlas_select, label_names,
                    coords, c_boot, norm, binary):
    from nilearn.connectome import ConnectivityMeasure
    from sklearn.covariance import GraphicalLassoCV

    conn_matrix = None
    if conn_model == 'corr' or conn_model == 'cor' or conn_model == 'correlation':
        # credit: nilearn
        print('\nComputing correlation matrix...\n')
        conn_measure = ConnectivityMeasure(kind='correlation')
        conn_matrix = conn_measure.fit_transform([time_series])[0]
    elif conn_model == 'partcorr' or conn_model == 'parcorr' or conn_model == 'partialcorrelation':
        # credit: nilearn
        print('\nComputing partial correlation matrix...\n')
        conn_measure = ConnectivityMeasure(kind='partial correlation')
        conn_matrix = conn_measure.fit_transform([time_series])[0]
    elif conn_model == 'cov' or conn_model == 'covariance' or conn_model == 'covar' or conn_model == 'sps' or conn_model == 'sparse' or conn_model == 'precision':
        # Fit estimator to matrix to get sparse matrix
        estimator_shrunk = None
        estimator = GraphicalLassoCV(cv=5)
        try:
            print('\nComputing covariance...\n')
            estimator.fit(time_series)
        except:
            print(
                'Unstable Lasso estimation--Attempting to re-run by first applying shrinkage...'
            )
            try:
                from sklearn.covariance import GraphicalLasso, empirical_covariance, shrunk_covariance
                emp_cov = empirical_covariance(time_series)
                for i in np.arange(0.8, 0.99, 0.01):
                    shrunk_cov = shrunk_covariance(emp_cov, shrinkage=i)
                    alphaRange = 10.0**np.arange(-8, 0)
                    for alpha in alphaRange:
                        try:
                            estimator_shrunk = GraphicalLasso(alpha)
                            estimator_shrunk.fit(shrunk_cov)
                            print(
                                "Retrying covariance matrix estimate with alpha=%s"
                                % alpha)
                            if estimator_shrunk is None:
                                pass
                            else:
                                break
                        except:
                            print(
                                "Covariance estimation failed with shrinkage at alpha=%s"
                                % alpha)
                            continue
            except ValueError:
                print(
                    'Unstable Lasso estimation! Shrinkage failed. A different connectivity model may be needed.'
                )
        if estimator is None and estimator_shrunk is None:
            raise RuntimeError('\nERROR: Covariance estimation failed.')
        if conn_model == 'sps' or conn_model == 'sparse' or conn_model == 'precision':
            if estimator_shrunk is None:
                print(
                    '\nFetching precision matrix from covariance estimator...\n'
                )
                conn_matrix = -estimator.precision_
            else:
                print(
                    '\nFetching shrunk precision matrix from covariance estimator...\n'
                )
                conn_matrix = -estimator_shrunk.precision_
        elif conn_model == 'cov' or conn_model == 'covariance' or conn_model == 'covar':
            if estimator_shrunk is None:
                print(
                    '\nFetching covariance matrix from covariance estimator...\n'
                )
                conn_matrix = estimator.covariance_
            else:
                conn_matrix = estimator_shrunk.covariance_
    elif conn_model == 'QuicGraphicalLasso':
        try:
            from inverse_covariance import QuicGraphicalLasso
        except ImportError:
            print('Cannot run QuicGraphLasso. Skggm not installed!')

        # Compute the sparse inverse covariance via QuicGraphLasso
        # credit: skggm
        model = QuicGraphicalLasso(init_method='cov',
                                   lam=0.5,
                                   mode='default',
                                   verbose=1)
        print('\nCalculating QuicGraphLasso precision matrix using skggm...\n')
        model.fit(time_series)
        conn_matrix = -model.precision_
    elif conn_model == 'QuicGraphLassoCV':
        try:
            from inverse_covariance import QuicGraphicalLassoCV
        except ImportError:
            print('Cannot run QuicGraphLassoCV. Skggm not installed!')

        # Compute the sparse inverse covariance via QuicGraphLassoCV
        # credit: skggm
        model = QuicGraphicalLassoCV(init_method='cov', verbose=1)
        print(
            '\nCalculating QuicGraphLassoCV precision matrix using skggm...\n')
        model.fit(time_series)
        conn_matrix = -model.precision_
    elif conn_model == 'QuicGraphicalLassoEBIC':
        try:
            from inverse_covariance import QuicGraphicalLassoEBIC
        except ImportError:
            print('Cannot run QuicGraphLassoEBIC. Skggm not installed!')

        # Compute the sparse inverse covariance via QuicGraphLassoEBIC
        # credit: skggm
        model = QuicGraphicalLassoEBIC(init_method='cov', verbose=1)
        print(
            '\nCalculating QuicGraphLassoEBIC precision matrix using skggm...\n'
        )
        model.fit(time_series)
        conn_matrix = -model.precision_
    elif conn_model == 'AdaptiveQuicGraphLasso':
        try:
            from inverse_covariance import AdaptiveQuicGraphicalLasso, QuicGraphicalLassoEBIC
        except ImportError:
            print('Cannot run AdaptiveGraphLasso. Skggm not installed!')

        # Compute the sparse inverse covariance via
        # AdaptiveGraphLasso + QuicGraphLassoEBIC + method='binary'
        # credit: skggm
        model = AdaptiveQuicGraphicalLasso(
            estimator=QuicGraphicalLassoEBIC(init_method='cov', ),
            method='binary',
        )
        print(
            '\nCalculating AdaptiveQuicGraphLasso precision matrix using skggm...\n'
        )
        model.fit(time_series)
        conn_matrix = -model.estimator_.precision_
    else:
        raise ValueError(
            '\nERROR! No connectivity model specified at runtime. Select a valid estimator using the '
            '-mod flag.')

    if conn_matrix.shape < (2, 2):
        raise RuntimeError(
            '\nERROR! Matrix estimation selection yielded an empty or 1-dimensional graph. '
            'Check time-series for errors or try using a different atlas')

    coords = np.array(coords)
    label_names = np.array(label_names)
    return conn_matrix, conn_model, dir_path, node_size, smooth, dens_thresh, network, ID, roi, min_span_tree, disp_filt, parc, prune, atlas_select, uatlas_select, label_names, coords, c_boot, norm, binary
Esempio n. 6
0
def get_conn_matrix(
    time_series,
    conn_model,
    dir_path,
    node_size,
    smooth,
    dens_thresh,
    network,
    ID,
    roi,
    min_span_tree,
    disp_filt,
    parc,
    prune,
    atlas,
    uatlas,
    labels,
    coords,
    norm,
    binary,
    hpass,
    extract_strategy,
):
    """
    Computes a functional connectivity matrix based on a node-extracted
    time-series array. Includes a library of routines across Nilearn,
    scikit-learn, and skggm packages, among others.

    Parameters
    ----------
    time_series : array
        2D m x n array consisting of the time-series signal for each ROI node
        where m = number of scans and n = number of ROI's.
    conn_model : str
       Connectivity estimation model (e.g. corr for correlation, cov for
       covariance, sps for precision covariance, partcorr for partial
       correlation). sps type is used by default.
    dir_path : str
        Path to directory containing subject derivative data for given run.
    node_size : int
        Spherical centroid node size in the case that coordinate-based
        centroids are used as ROI's.
    smooth : int
        Smoothing width (mm fwhm) to apply to time-series when extracting
        signal from ROI's.
    dens_thresh : bool
        Indicates whether a target graph density is to be used as the basis for
        thresholding.
    network : str
        Resting-state network based on Yeo-7 and Yeo-17 naming
        (e.g. 'Default') used to filter nodes in the study of brain subgraphs.
    ID : str
        A subject id or other unique identifier.
    roi : str
        File path to binarized/boolean region-of-interest Nifti1Image file.
    min_span_tree : bool
        Indicates whether local thresholding from the Minimum Spanning Tree
        should be used.
    disp_filt : bool
        Indicates whether local thresholding using a disparity filter and
        'backbone network' should be used.
    parc : bool
        Indicates whether to use parcels instead of coordinates as ROI nodes.
    prune : bool
        Indicates whether to prune final graph of disconnected nodes/isolates.
    atlas : str
        Name of atlas parcellation used.
    uatlas : str
        File path to atlas parcellation Nifti1Image in MNI template space.
    labels : list
        List of string labels corresponding to ROI nodes.
    coords : list
        List of (x, y, z) tuples corresponding to a coordinate atlas used or
        which represent the center-of-mass of each parcellation node.
    norm : int
        Indicates method of normalizing resulting graph.
    binary : bool
        Indicates whether to binarize resulting graph edges to form an
        unweighted graph.
    hpass : bool
        High-pass filter values (Hz) to apply to node-extracted time-series.
    extract_strategy : str
        The name of a valid function used to reduce the time-series region
        extraction.

    Returns
    -------
    conn_matrix : array
        Adjacency matrix stored as an m x n array of nodes and edges.
    conn_model : str
       Connectivity estimation model (e.g. corr for correlation, cov for
       covariance, sps for precision covariance, partcorr for partial
       correlation). sps type is used by default.
    dir_path : str
        Path to directory containing subject derivative data for given run.
    node_size : int
        Spherical centroid node size in the case that coordinate-based
        centroids are used as ROI's for tracking.
    smooth : int
        Smoothing width (mm fwhm) to apply to time-series when extracting
        signal from ROI's.
    dens_thresh : bool
        Indicates whether a target graph density is to be used as the basis for
        thresholding.
    network : str
        Resting-state network based on Yeo-7 and Yeo-17 naming
        (e.g. 'Default') used to filter nodes in the study of brain subgraphs.
    ID : str
        A subject id or other unique identifier.
    roi : str
        File path to binarized/boolean region-of-interest Nifti1Image file.
    min_span_tree : bool
        Indicates whether local thresholding from the Minimum Spanning Tree
        should be used.
    disp_filt : bool
        Indicates whether local thresholding using a disparity filter and
        'backbone network' should be used.
    parc : bool
        Indicates whether to use parcels instead of coordinates as ROI nodes.
    prune : bool
        Indicates whether to prune final graph of disconnected nodes/isolates.
    atlas : str
        Name of atlas parcellation used.
    uatlas : str
        File path to atlas parcellation Nifti1Image in MNI template space.
    labels : list
        List of string labels corresponding to graph nodes.
    coords : list
        List of (x, y, z) tuples corresponding to a coordinate atlas used or
        which represent the center-of-mass of each parcellation node.
    norm : int
        Indicates method of normalizing resulting graph.
    binary : bool
        Indicates whether to binarize resulting graph edges to form an
        unweighted graph.
    hpass : bool
        High-pass filter values (Hz) to apply to node-extracted time-series.
    extract_strategy : str
        The name of a valid function used to reduce the time-series region
        extraction.

    References
    ----------
    .. [1] Varoquaux, G., & Craddock, R. C. (2013). Learning and comparing
      functional connectomes across subjects. NeuroImage.
      https://doi.org/10.1016/j.neuroimage.2013.04.007
    .. [2] Jason Laska, Manjari Narayan, 2017. skggm 0.2.7:
      A scikit-learn compatible package for Gaussian and related Graphical
      Models. doi:10.5281/zenodo.830033

    """
    import sys
    from pynets.fmri.estimation import get_optimal_cov_estimator
    from nilearn.connectome import ConnectivityMeasure

    nilearn_kinds = [
        "cov", "covariance", "covar", "corr", "cor", "correlation", "partcorr",
        "parcorr", "partialcorrelation", "cov", "covariance", "covar", "sps",
        "sparse", "precision"
    ]

    conn_matrix = None
    estimator = get_optimal_cov_estimator(time_series)

    def fallback_covariance(time_series):
        from sklearn.ensemble import IsolationForest
        from sklearn import covariance

        # Remove gross outliers
        model = IsolationForest(contamination=0.02)
        model.fit(time_series)
        outlier_mask = model.predict(time_series)
        outlier_mask[outlier_mask == -1] = 0
        time_series = time_series[outlier_mask.astype('bool')]

        # Fall back to LedoitWolf
        print('Matrix estimation failed with Lasso and shrinkage due to '
              'ill conditions. Removing potential anomalies from the '
              'time-series using IsolationForest...')
        try:
            print("Trying Ledoit-Wolf Estimator...")
            conn_measure = ConnectivityMeasure(
                cov_estimator=covariance.LedoitWolf(store_precision=True,
                                                    assume_centered=True),
                kind=kind)
            conn_matrix = conn_measure.fit_transform([time_series])[0]
        except (np.linalg.linalg.LinAlgError, FloatingPointError):
            print("Trying Oracle Approximating Shrinkage Estimator...")
            conn_measure = ConnectivityMeasure(
                cov_estimator=covariance.OAS(assume_centered=True), kind=kind)
            try:
                conn_matrix = conn_measure.fit_transform([time_series])[0]
            except (np.linalg.linalg.LinAlgError, FloatingPointError):
                raise ValueError('All covariance estimators failed to '
                                 'converge...')

        return conn_matrix

    if conn_model in nilearn_kinds:
        if conn_model == "corr" or conn_model == "cor" or conn_model == "correlation":
            print("\nComputing correlation matrix...\n")
            kind = "correlation"
        elif conn_model == "partcorr" or conn_model == "parcorr" or conn_model == "partialcorrelation":
            print("\nComputing partial correlation matrix...\n")
            kind = "partial correlation"
        elif conn_model == "sps" or conn_model == "sparse" or conn_model == "precision":
            print("\nComputing precision matrix...\n")
            kind = "precision"
        elif conn_model == "cov" or conn_model == "covariance" or conn_model == "covar":
            print("\nComputing covariance matrix...\n")
            kind = "covariance"
        else:
            try:
                raise ValueError(
                    "\nERROR! No connectivity model specified at runtime. Select a"
                    " valid estimator using the -mod flag.")
            except ValueError:
                sys.exit(1)

        # Try with the best-fitting Lasso estimator
        if estimator:
            conn_measure = ConnectivityMeasure(cov_estimator=estimator,
                                               kind=kind)
            try:
                conn_matrix = conn_measure.fit_transform([time_series])[0]
            except (np.linalg.linalg.LinAlgError, FloatingPointError):
                conn_matrix = fallback_covariance(time_series)
        else:
            conn_matrix = fallback_covariance(time_series)
    else:
        if conn_model == "QuicGraphicalLasso":
            try:
                from inverse_covariance import QuicGraphicalLasso
            except ImportError as e:
                print(e, "Cannot run QuicGraphLasso. Skggm not installed!")
                sys.exit(1)

            # Compute the sparse inverse covariance via QuicGraphLasso
            # credit: skggm
            model = QuicGraphicalLasso(init_method="cov",
                                       lam=0.5,
                                       mode="default",
                                       verbose=1)
            print(
                "\nCalculating QuicGraphLasso precision matrix using skggm...\n"
            )
            model.fit(time_series)
            conn_matrix = model.precision_
        elif conn_model == "QuicGraphicalLassoCV":
            try:
                from inverse_covariance import QuicGraphicalLassoCV
            except ImportError as e:
                print(e, "Cannot run QuicGraphLassoCV. Skggm not installed!")
                sys.exit(1)

            # Compute the sparse inverse covariance via QuicGraphLassoCV
            # credit: skggm
            model = QuicGraphicalLassoCV(init_method="cov", verbose=1)
            print("\nCalculating QuicGraphLassoCV precision matrix using"
                  " skggm...\n")
            model.fit(time_series)
            conn_matrix = model.precision_
        elif conn_model == "QuicGraphicalLassoEBIC":
            try:
                from inverse_covariance import QuicGraphicalLassoEBIC
            except ImportError as e:
                print(e, "Cannot run QuicGraphLassoEBIC. Skggm not installed!")
                sys.exit(1)

            # Compute the sparse inverse covariance via QuicGraphLassoEBIC
            # credit: skggm
            model = QuicGraphicalLassoEBIC(init_method="cov", verbose=1)
            print("\nCalculating QuicGraphLassoEBIC precision matrix using"
                  " skggm...\n")
            model.fit(time_series)
            conn_matrix = model.precision_
        elif conn_model == "AdaptiveQuicGraphicalLasso":
            try:
                from inverse_covariance import (
                    AdaptiveQuicGraphicalLasso,
                    QuicGraphicalLassoEBIC,
                )
            except ImportError as e:
                print(e, "Cannot run AdaptiveGraphLasso. Skggm not installed!")
                sys.exit(1)

            # Compute the sparse inverse covariance via
            # AdaptiveGraphLasso + QuicGraphLassoEBIC + method='binary'
            # credit: skggm
            model = AdaptiveQuicGraphicalLasso(
                estimator=QuicGraphicalLassoEBIC(init_method="cov", ),
                method="binary",
            )
            print("\nCalculating AdaptiveQuicGraphLasso precision matrix using"
                  " skggm...\n")
            model.fit(time_series)
            conn_matrix = model.estimator_.precision_
        else:
            try:
                raise ValueError(
                    "\nNo connectivity model specified at runtime. "
                    "Select a valid estimator using the -mod flag.")
            except ValueError:
                import sys
                sys.exit(1)

    # Enforce symmetry
    conn_matrix = np.nan_to_num(np.maximum(conn_matrix, conn_matrix.T))

    if conn_matrix.shape < (2, 2):
        raise RuntimeError(
            "\nMatrix estimation selection yielded an empty or"
            " 1-dimensional graph. "
            "Check time-series for errors or try using a different atlas")

    coords = np.array(coords)
    labels = np.array(labels)

    # assert coords.shape[0] == labels.shape[0] == conn_matrix.shape[0]

    del time_series

    return (
        conn_matrix,
        conn_model,
        dir_path,
        node_size,
        smooth,
        dens_thresh,
        network,
        ID,
        roi,
        min_span_tree,
        disp_filt,
        parc,
        prune,
        atlas,
        uatlas,
        labels,
        coords,
        norm,
        binary,
        hpass,
        extract_strategy,
    )
Esempio n. 7
0
def get_conn_matrix(time_series, conn_model, dir_path, node_size, smooth, dens_thresh, network, ID, roi, min_span_tree,
                    disp_filt, parc, prune, atlas, uatlas, labels, coords, norm, binary,
                    hpass, extract_strategy):
    """
    Computes a functional connectivity matrix based on a node-extracted time-series array.
    Includes a library of routines across Nilearn, scikit-learn, and skggm packages, among others.

    Parameters
    ----------
    time_series : array
        2D m x n array consisting of the time-series signal for each ROI node where m = number of scans and
        n = number of ROI's.
    conn_model : str
       Connectivity estimation model (e.g. corr for correlation, cov for covariance, sps for precision covariance,
       partcorr for partial correlation). sps type is used by default.
    dir_path : str
        Path to directory containing subject derivative data for given run.
    node_size : int
        Spherical centroid node size in the case that coordinate-based centroids
        are used as ROI's.
    smooth : int
        Smoothing width (mm fwhm) to apply to time-series when extracting signal from ROI's.
    dens_thresh : bool
        Indicates whether a target graph density is to be used as the basis for
        thresholding.
    network : str
        Resting-state network based on Yeo-7 and Yeo-17 naming (e.g. 'Default') used to filter nodes in the study of
        brain subgraphs.
    ID : str
        A subject id or other unique identifier.
    roi : str
        File path to binarized/boolean region-of-interest Nifti1Image file.
    min_span_tree : bool
        Indicates whether local thresholding from the Minimum Spanning Tree
        should be used.
    disp_filt : bool
        Indicates whether local thresholding using a disparity filter and
        'backbone network' should be used.
    parc : bool
        Indicates whether to use parcels instead of coordinates as ROI nodes.
    prune : bool
        Indicates whether to prune final graph of disconnected nodes/isolates.
    atlas : str
        Name of atlas parcellation used.
    uatlas : str
        File path to atlas parcellation Nifti1Image in MNI template space.
    labels : list
        List of string labels corresponding to ROI nodes.
    coords : list
        List of (x, y, z) tuples corresponding to a coordinate atlas used or
        which represent the center-of-mass of each parcellation node.
    norm : int
        Indicates method of normalizing resulting graph.
    binary : bool
        Indicates whether to binarize resulting graph edges to form an
        unweighted graph.
    hpass : bool
        High-pass filter values (Hz) to apply to node-extracted time-series.
    extract_strategy : str 
        The name of a valid function used to reduce the time-series region extraction.

    Returns
    -------
    conn_matrix : array
        Adjacency matrix stored as an m x n array of nodes and edges.
    conn_model : str
       Connectivity estimation model (e.g. corr for correlation, cov for covariance, sps for precision covariance,
       partcorr for partial correlation). sps type is used by default.
    dir_path : str
        Path to directory containing subject derivative data for given run.
    node_size : int
        Spherical centroid node size in the case that coordinate-based centroids
        are used as ROI's for tracking.
    smooth : int
        Smoothing width (mm fwhm) to apply to time-series when extracting signal from ROI's.
    dens_thresh : bool
        Indicates whether a target graph density is to be used as the basis for
        thresholding.
    network : str
        Resting-state network based on Yeo-7 and Yeo-17 naming (e.g. 'Default') used to filter nodes in the study of
        brain subgraphs.
    ID : str
        A subject id or other unique identifier.
    roi : str
        File path to binarized/boolean region-of-interest Nifti1Image file.
    min_span_tree : bool
        Indicates whether local thresholding from the Minimum Spanning Tree
        should be used.
    disp_filt : bool
        Indicates whether local thresholding using a disparity filter and
        'backbone network' should be used.
    parc : bool
        Indicates whether to use parcels instead of coordinates as ROI nodes.
    prune : bool
        Indicates whether to prune final graph of disconnected nodes/isolates.
    atlas : str
        Name of atlas parcellation used.
    uatlas : str
        File path to atlas parcellation Nifti1Image in MNI template space.
    labels : list
        List of string labels corresponding to graph nodes.
    coords : list
        List of (x, y, z) tuples corresponding to a coordinate atlas used or
        which represent the center-of-mass of each parcellation node.
    norm : int
        Indicates method of normalizing resulting graph.
    binary : bool
        Indicates whether to binarize resulting graph edges to form an
        unweighted graph.
    hpass : bool
        High-pass filter values (Hz) to apply to node-extracted time-series.
    extract_strategy : str 
        The name of a valid function used to reduce the time-series region extraction.

    References
    ----------
    .. [1] Varoquaux, G., & Craddock, R. C. (2013). Learning and comparing functional connectomes
      across subjects. NeuroImage. https://doi.org/10.1016/j.neuroimage.2013.04.007
    .. [2] Jason Laska, Manjari Narayan, 2017. skggm 0.2.7: A scikit-learn compatible package
      for Gaussian and related Graphical Models. doi:10.5281/zenodo.830033

    """
    from nilearn.connectome import ConnectivityMeasure
    from sklearn.covariance import GraphicalLassoCV

    conn_matrix = None
    if conn_model == 'corr' or conn_model == 'cor' or conn_model == 'correlation':
        # credit: nilearn
        print('\nComputing correlation matrix...\n')
        conn_measure = ConnectivityMeasure(kind='correlation')
        conn_matrix = conn_measure.fit_transform([time_series])[0]
    elif conn_model == 'partcorr' or conn_model == 'parcorr' or conn_model == 'partialcorrelation':
        # credit: nilearn
        print('\nComputing partial correlation matrix...\n')
        conn_measure = ConnectivityMeasure(kind='partial correlation')
        conn_matrix = conn_measure.fit_transform([time_series])[0]
    elif conn_model == 'cov' or conn_model == 'covariance' or conn_model == 'covar' or conn_model == 'sps' or \
        conn_model == 'sparse' or conn_model == 'precision':
        # Fit estimator to matrix to get sparse matrix
        estimator_shrunk = None
        estimator = GraphicalLassoCV(cv=5)
        try:
            print('\nComputing covariance...\n')
            estimator.fit(time_series)
        except:
            print('Unstable Lasso estimation--Attempting to re-run by first applying shrinkage...')
            try:
                from sklearn.covariance import GraphicalLasso, empirical_covariance, shrunk_covariance
                emp_cov = empirical_covariance(time_series)
                for i in np.arange(0.8, 0.99, 0.01):
                    shrunk_cov = shrunk_covariance(emp_cov, shrinkage=i)
                    alphaRange = 10.0 ** np.arange(-8, 0)
                    for alpha in alphaRange:
                        try:
                            estimator_shrunk = GraphicalLasso(alpha)
                            estimator_shrunk.fit(shrunk_cov)
                            print(f"Retrying covariance matrix estimate with alpha={alpha}")
                            if estimator_shrunk is None:
                                pass
                            else:
                                break
                        except:
                            print(f"Covariance estimation failed with shrinkage at alpha={alpha}")
                            continue
            except ValueError:
                print('Unstable Lasso estimation! Shrinkage failed. A different connectivity model may be needed.')
        if estimator is None and estimator_shrunk is None:
            raise RuntimeError('\nERROR: Covariance estimation failed.')
        if conn_model == 'sps' or conn_model == 'sparse' or conn_model == 'precision':
            if estimator_shrunk is None:
                print('\nFetching precision matrix from covariance estimator...\n')
                conn_matrix = -estimator.precision_
            else:
                print('\nFetching shrunk precision matrix from covariance estimator...\n')
                conn_matrix = -estimator_shrunk.precision_
        elif conn_model == 'cov' or conn_model == 'covariance' or conn_model == 'covar':
            if estimator_shrunk is None:
                print('\nFetching covariance matrix from covariance estimator...\n')
                conn_matrix = estimator.covariance_
            else:
                conn_matrix = estimator_shrunk.covariance_
    elif conn_model == 'QuicGraphicalLasso':

        try:
            from inverse_covariance import QuicGraphicalLasso
        except ImportError:
            print('Cannot run QuicGraphLasso. Skggm not installed!')

        # Compute the sparse inverse covariance via QuicGraphLasso
        # credit: skggm
        model = QuicGraphicalLasso(
            init_method='cov',
            lam=0.5,
            mode='default',
            verbose=1)
        print('\nCalculating QuicGraphLasso precision matrix using skggm...\n')
        model.fit(time_series)
        conn_matrix = -model.precision_
    elif conn_model == 'QuicGraphicalLassoCV':
        try:
            from inverse_covariance import QuicGraphicalLassoCV
        except ImportError:
            print('Cannot run QuicGraphLassoCV. Skggm not installed!')

        # Compute the sparse inverse covariance via QuicGraphLassoCV
        # credit: skggm
        model = QuicGraphicalLassoCV(
            init_method='cov',
            verbose=1)
        print('\nCalculating QuicGraphLassoCV precision matrix using skggm...\n')
        model.fit(time_series)
        conn_matrix = -model.precision_
    elif conn_model == 'QuicGraphicalLassoEBIC':
        try:
            from inverse_covariance import QuicGraphicalLassoEBIC
        except ImportError:
            print('Cannot run QuicGraphLassoEBIC. Skggm not installed!')

        # Compute the sparse inverse covariance via QuicGraphLassoEBIC
        # credit: skggm
        model = QuicGraphicalLassoEBIC(
            init_method='cov',
            verbose=1)
        print('\nCalculating QuicGraphLassoEBIC precision matrix using skggm...\n')
        model.fit(time_series)
        conn_matrix = -model.precision_
    elif conn_model == 'AdaptiveQuicGraphicalLasso':
        try:
            from inverse_covariance import AdaptiveQuicGraphicalLasso, QuicGraphicalLassoEBIC
        except ImportError:
            print('Cannot run AdaptiveGraphLasso. Skggm not installed!')

        # Compute the sparse inverse covariance via
        # AdaptiveGraphLasso + QuicGraphLassoEBIC + method='binary'
        # credit: skggm
        model = AdaptiveQuicGraphicalLasso(
            estimator=QuicGraphicalLassoEBIC(
                init_method='cov',
            ),
            method='binary',
        )
        print('\nCalculating AdaptiveQuicGraphLasso precision matrix using skggm...\n')
        model.fit(time_series)
        conn_matrix = -model.estimator_.precision_
    else:
        raise ValueError('\nERROR! No connectivity model specified at runtime. Select a valid estimator using the '
                         '-mod flag.')

    # Enforce symmetry
    conn_matrix = np.maximum(conn_matrix, conn_matrix.T)

    if conn_matrix.shape < (2, 2):
        raise RuntimeError('\nERROR! Matrix estimation selection yielded an empty or 1-dimensional graph. '
                           'Check time-series for errors or try using a different atlas')

    coords = np.array(coords)
    labels = np.array(labels)

    del time_series

    return (conn_matrix, conn_model, dir_path, node_size, smooth, dens_thresh, network, ID, roi, min_span_tree,
            disp_filt, parc, prune, atlas, uatlas, labels, coords, norm, binary, hpass, extract_strategy)
Esempio n. 8
0
def get_conn_matrix(time_series, conn_model, dir_path, node_size, smooth,
                    dens_thresh, network, ID, mask, min_span_tree, disp_filt,
                    parc, prune, atlas_select, uatlas_select, label_names,
                    coords, vox_array):
    from nilearn.connectome import ConnectivityMeasure
    from sklearn.covariance import GraphLassoCV

    conn_matrix = None
    if conn_model == 'corr':
        # credit: nilearn
        print('\nComputing correlation matrix...\n')
        conn_measure = ConnectivityMeasure(kind='correlation')
        conn_matrix = conn_measure.fit_transform([time_series])[0]
    elif conn_model == 'partcorr':
        # credit: nilearn
        print('\nComputing partial correlation matrix...\n')
        conn_measure = ConnectivityMeasure(kind='partial correlation')
        conn_matrix = conn_measure.fit_transform([time_series])[0]
    elif conn_model == 'cov' or conn_model == 'sps':
        # Fit estimator to matrix to get sparse matrix
        estimator_shrunk = None
        estimator = GraphLassoCV()
        try:
            print('\nComputing covariance...\n')
            estimator.fit(time_series)
        except:
            print(
                'Unstable Lasso estimation--Attempting to re-run by first applying shrinkage...'
            )
            try:
                from sklearn.covariance import GraphLasso, empirical_covariance, shrunk_covariance
                emp_cov = empirical_covariance(time_series)
                for i in np.arange(0.8, 0.99, 0.01):
                    shrunk_cov = shrunk_covariance(emp_cov, shrinkage=i)
                    alphaRange = 10.0**np.arange(-8, 0)
                    for alpha in alphaRange:
                        try:
                            estimator_shrunk = GraphLasso(alpha)
                            estimator_shrunk.fit(shrunk_cov)
                            print(
                                "Retrying covariance matrix estimate with alpha=%s"
                                % alpha)
                            if estimator_shrunk is None:
                                pass
                            else:
                                break
                        except:
                            print(
                                "Covariance estimation failed with shrinkage at alpha=%s"
                                % alpha)
                            continue
            except ValueError:
                print(
                    'Unstable Lasso estimation! Shrinkage failed. A different connectivity model may be needed.'
                )
        if estimator is None and estimator_shrunk is None:
            raise RuntimeError('ERROR: Covariance estimation failed.')
        if conn_model == 'sps':
            if estimator_shrunk is None:
                print(
                    '\nFetching precision matrix from covariance estimator...\n'
                )
                conn_matrix = -estimator.precision_
            else:
                print(
                    '\nFetching shrunk precision matrix from covariance estimator...\n'
                )
                conn_matrix = -estimator_shrunk.precision_
        elif conn_model == 'cov':
            if estimator_shrunk is None:
                print(
                    '\nFetching covariance matrix from covariance estimator...\n'
                )
                conn_matrix = estimator.covariance_
            else:
                conn_matrix = estimator_shrunk.covariance_
    elif conn_model == 'QuicGraphicalLasso':
        try:
            from inverse_covariance import QuicGraphicalLasso
        except ImportError:
            print('Cannot run QuicGraphLasso. Skggm not installed!')

        # Compute the sparse inverse covariance via QuicGraphLasso
        # credit: skggm
        model = QuicGraphicalLasso(init_method='cov',
                                   lam=0.5,
                                   mode='default',
                                   verbose=1)
        print('\nCalculating QuicGraphLasso precision matrix using skggm...\n')
        model.fit(time_series)
        conn_matrix = -model.precision_
    elif conn_model == 'QuicGraphLassoCV':
        try:
            from inverse_covariance import QuicGraphicalLassoCV
        except ImportError:
            print('Cannot run QuicGraphLassoCV. Skggm not installed!')

        # Compute the sparse inverse covariance via QuicGraphLassoCV
        # credit: skggm
        model = QuicGraphicalLassoCV(init_method='cov', verbose=1)
        print(
            '\nCalculating QuicGraphLassoCV precision matrix using skggm...\n')
        model.fit(time_series)
        conn_matrix = -model.precision_
    elif conn_model == 'QuicGraphicalLassoEBIC':
        try:
            from inverse_covariance import QuicGraphicalLassoEBIC
        except ImportError:
            print('Cannot run QuicGraphLassoEBIC. Skggm not installed!')

        # Compute the sparse inverse covariance via QuicGraphLassoEBIC
        # credit: skggm
        model = QuicGraphicalLassoEBIC(init_method='cov', verbose=1)
        print(
            '\nCalculating QuicGraphLassoEBIC precision matrix using skggm...\n'
        )
        model.fit(time_series)
        conn_matrix = -model.precision_
    elif conn_model == 'AdaptiveQuicGraphLasso':
        try:
            from inverse_covariance import AdaptiveQuicGraphicalLasso, QuicGraphicalLassoEBIC
        except ImportError:
            print('Cannot run AdaptiveGraphLasso. Skggm not installed!')

        # Compute the sparse inverse covariance via
        # AdaptiveGraphLasso + QuicGraphLassoEBIC + method='binary'
        # credit: skggm
        model = AdaptiveQuicGraphicalLasso(
            estimator=QuicGraphicalLassoEBIC(init_method='cov', ),
            method='binary',
        )
        print(
            '\nCalculating AdaptiveQuicGraphLasso precision matrix using skggm...\n'
        )
        model.fit(time_series)
        conn_matrix = -model.estimator_.precision_

    # Weight reuslting matrix by voxels in each label if using parcels as nodes
    # if parc is True:
    #     norm_parcels = (vox_array - min(vox_array)) / (max(vox_array) - min(vox_array))
    #     conn_matrix_norm = normalize(conn_matrix)
    #     conn_matrix = norm_parcels * conn_matrix_norm

    coords = np.array(coords)
    label_names = np.array(label_names)
    return conn_matrix, conn_model, dir_path, node_size, smooth, dens_thresh, network, ID, mask, min_span_tree, disp_filt, parc, prune, atlas_select, uatlas_select, label_names, coords
if estimator_type == "QuicGraphicalLasso":
    # Compute the sparse inverse covariance via QuicGraphicalLasso
    estimator = QuicGraphicalLasso(init_method="cov",
                                   lam=0.5,
                                   mode="default",
                                   verbose=1)
    estimator.fit(timeseries)

elif estimator_type == "QuicGraphicalLassoCV":
    # Compute the sparse inverse covariance via QuicGraphicalLassoCV
    estimator = QuicGraphicalLassoCV(init_method="cov", verbose=1)
    estimator.fit(timeseries)

elif estimator_type == "QuicGraphicalLassoEBIC":
    # Compute the sparse inverse covariance via QuicGraphicalLassoEBIC
    estimator = QuicGraphicalLassoEBIC(init_method="cov", verbose=1)
    estimator.fit(timeseries)

elif estimator_type == "AdaptiveQuicGraphicalLasso":
    # Compute the sparse inverse covariance via
    # AdaptiveGraphicalLasso + QuicGraphicalLassoEBIC + method='binary'
    model = AdaptiveGraphicalLasso(
        estimator=QuicGraphicalLassoEBIC(init_method="cov"), method="binary")
    model.fit(timeseries)
    estimator = model.estimator_

# Display the sparse inverse covariance
plt.figure(figsize=(7.5, 7.5))
plt.imshow(np.triu(-estimator.precision_, 1),
           interpolation="nearest",
           cmap=plt.cm.RdBu_r)
Esempio n. 10
0
class TestAdaptiveGraphicalLasso(object):
    @pytest.mark.parametrize(
        "params_in",
        [
            ({
                "estimator":
                QuicGraphicalLassoCV(
                    cv=2,
                    n_refinements=6,
                    init_method="cov",
                    score_metric="log_likelihood",
                ),
                "method":
                "binary",
            }),
            ({
                "estimator":
                QuicGraphicalLassoCV(
                    cv=2,
                    n_refinements=6,
                    init_method="cov",
                    score_metric="log_likelihood",
                ),
                "method":
                "inverse",
            }),
            ({
                "estimator":
                QuicGraphicalLassoCV(
                    cv=2,
                    n_refinements=6,
                    init_method="cov",
                    score_metric="log_likelihood",
                ),
                "method":
                "inverse_squared",
            }),
            ({
                "estimator": QuicGraphicalLassoEBIC(),
                "method": "binary"
            }),
            ({
                "estimator": QuicGraphicalLassoEBIC(),
                "method": "inverse"
            }),
            ({
                "estimator": QuicGraphicalLassoEBIC(),
                "method": "inverse_squared"
            }),
        ],
    )
    def test_integration_adaptive_graphical_lasso(self, params_in):
        """
        Just tests inputs/outputs (not validity of result).
        """
        n_features = 20
        n_samples = 25
        cov, prec, adj = ClusterGraph(n_blocks=1, chain_blocks=False,
                                      seed=1).create(n_features, 0.8)
        prng = np.random.RandomState(2)
        X = prng.multivariate_normal(np.zeros(n_features), cov, size=n_samples)

        model = AdaptiveGraphicalLasso(**params_in)
        model.fit(X)
        assert model.estimator_ is not None
        assert model.lam_ is not None

        assert np.sum(model.lam_[np.diag_indices(n_features)]) == 0

        if params_in["method"] == "binary":
            uvals = set(model.lam_.flat)
            assert len(uvals) == 2
            assert 0 in uvals
            assert 1 in uvals
        elif (params_in["method"] == "inverse"
              or params_in["method"] == "inverse_squared"):
            uvals = set(model.lam_.flat[model.lam_.flat != 0])
            assert len(uvals) > 0