Esempio n. 1
0
def evaluate():
    setup = inversefed.utils.system_startup()
    defs = inversefed.training_strategy('conservative')
    defs.epochs = opt.epochs
    loss_fn, trainloader, validloader = preprocess(opt, defs, valid=False)
    model = create_model(opt)
    model.to(**setup)
    root = create_save_dir()

    filename = os.path.join(root, '{}_{}.pth'.format(opt.arch, opt.epochs))
    print(filename)
    if not os.path.exists(filename):
        assert False

    print(filename)
    model.load_state_dict(torch.load(filename))
    model.eval()
    stats = {'valid_losses': list(), 'valid_Accuracy': list()}
    inversefed.training.training_routine.validate(model,
                                                  loss_fn,
                                                  validloader,
                                                  defs,
                                                  setup=setup,
                                                  stats=stats)
    print(stats)
Esempio n. 2
0
def main():
    setup = inversefed.utils.system_startup()
    defs = inversefed.training_strategy('conservative')
    defs.epochs = opt.epochs
    loss_fn, trainloader, validloader = preprocess(opt, defs)

    # init model
    model = create_model(opt)
    model.to(**setup)
    save_dir = create_save_dir()
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
    file = f'{save_dir}/{arch}_{defs.epochs}.pth'
    inversefed.train(model,
                     loss_fn,
                     trainloader,
                     validloader,
                     defs,
                     setup=setup,
                     save_dir=save_dir)
    torch.save(model.state_dict(), f'{file}')
    model.eval()
import numpy as np
from PIL import Image

import inversefed
torch.backends.cudnn.benchmark = inversefed.consts.BENCHMARK

from collections import defaultdict
import datetime
import time
import os

# Parse input arguments
args = inversefed.options().parse_args()
# Parse training strategy
defs = inversefed.training_strategy('conservative')
defs.epochs = args.epochs
# 100% reproducibility?
if args.deterministic:
    image2graph2vec.utils.set_deterministic()


def boost_salient_filters(input_gradient, boost_const, salient_filters):

    for idx in range(len(input_gradient)):
        if len(input_gradient[idx].size()) == 4:
            salient_filters -= input_gradient[idx].size()[0]
            for ind in range(len(salient_filters)):
                if salient_filters[ind] < 0:
                    input_gradient[idx][salient_filters[ind]] = input_gradient[
                        idx][salient_filters[ind]] * boost_const
Esempio n. 4
0
parser.add_argument('--aug_list', default=None, required=True, type=str, help='Vision model.')
parser.add_argument('--optim', default=None, required=True, type=str, help='Vision model.')
parser.add_argument('--mode', default=None, required=True, type=str, help='Mode.')
parser.add_argument('--rlabel', default=False, type=bool, help='rlabel')
parser.add_argument('--arch', default=None, required=True, type=str, help='Vision model.')
parser.add_argument('--data', default=None, required=True, type=str, help='Vision dataset.')
parser.add_argument('--epochs', default=None, required=True, type=int, help='Vision epoch.')
parser.add_argument('--resume', default=0, type=int, help='rlabel')

opt = parser.parse_args()
num_images = 1


# init env
setup = inversefed.utils.system_startup()
defs = inversefed.training_strategy('conservative'); defs.epochs = opt.epochs


# init training
arch = opt.arch
trained_model = True
mode = opt.mode
assert mode in ['normal', 'aug', 'crop']

config = create_config(opt)


def create_save_dir():
    return 'benchmark/images/data_{}_arch_{}_epoch_{}_optim_{}_mode_{}_auglist_{}_rlabel_{}'.format(opt.data, opt.arch, opt.epochs, opt.optim, opt.mode, \
        opt.aug_list, opt.rlabel)