Esempio n. 1
0
def inputTest():
    inputM = ioex.InputManager()
    trainingData = inputM.getMnistTrainingData()

    print(trainingData.images.shape)
    print(trainingData.answers.shape)
    # trainingData.shuffle()
    sample = trainingData.getImageBatch(3)
    print(sample)

    print(trainingData.images.shape)
    print(trainingData.answers.shape)

    idx = inputM.selectNumber()
    sample = trainingData.getSingleData(idx)

    print("answer: " + str(sample.answer))
    print(sample.getSize())

    print("show picture?")
    selected = inputM.selectYesOrNo()
    if selected:
        plt.imshow(sample.image, cmap=cm.gray)
        plt.show()
    return sample
Esempio n. 2
0
def dataTest():
    inputM = ioex.InputManager()
    trainingData = inputM.getMnistTrainingData()

    print("\ngetImageBatch")
    for i in range(1, 11):
        #計測スタート
        start = time.time()
        batch = trainingData.getImageBatch(50 * i)
        #print(batch)
        #print(batch.shape)
        #計測終了
        elapsed_time = time.time() - start
        print(50 * i, end=": ")
        print("elapsed_time:{0}".format(elapsed_time) + "[sec]")

    print("\ngetAnswerVectorBatch")
    for i in range(1, 11):
        #計測スタート
        start = time.time()
        batch = trainingData.getAnswerVecotrBatch(50 * i)
        #計測終了
        elapsed_time = time.time() - start
        print(50 * i, end=": ")
        print("elapsed_time:{0}".format(elapsed_time) + "[sec]")

    print("\nshaffle")
    #計測スタート
    start = time.time()
    trainingData.shuffle()
    #計測終了
    elapsed_time = time.time() - start
    print("elapsed_time:{0}".format(elapsed_time) + "[sec]")
Esempio n. 3
0
def inputConvTest():
    inputM = ioex.InputManager()
    outputM = ioex.OutputManager()
    trainingData = inputM.getMnistTrainingData()
    sample = trainingData.getImageBatch(5)
    outputM.showPictureFromBatch(sample, (28, 28))

    inputLayer = layer.InputLayer(28 * 28)
    conv = layer.ConvolutionalLayer(4, 3, inputLayer)
    outputLayer = layer.OutputLayer(10, conv)

    #conv.setWeight(np.array([[1,1,1,1,-8,1,1,1,1],[1,0,1,0,-4,0,1,0,1],[0,1,0,1,-4,1,0,1,0],[0,0,0,0,1,0,0,0,0]]))
    inputLayer.setInputBatch(sample)

    for i in range(0, 10000):
        outputLayer.calculate()
        if i % 1000 == 0:
            outputM.showPictureFromBatch(conv.getOutput(), (28 * 4, 28))
            print(conv.getWeight())
        outputLayer.update(trainingData.getAnswerVecotrBatch(5))
Esempio n. 4
0
import ioex
import layer
import util

print("### task1 ###")

# 入出力準備
inputM = ioex.InputManager()
outputM = ioex.OutputManager()
testingData = inputM.getMnistTestingData()

# 3層ニューラルネットワーク
inputLayer = layer.InputLayer(28 * 28)
hiddenLayer = layer.HiddenLayer(50, inputLayer, 1, 1)
outputLayer = layer.OutputLayer(10, hiddenLayer, 1, 1)

# ニューラルネットワークの設定
#outputLayer.setActivator(util.correctedSoftmax)

#入出力
loop = True
while (loop):
    # 入力
    targetNum = inputM.selectNumber()
    sample = testingData.getSingleData(targetNum)
    inputLayer.setInput(sample.getImage())

    # 出力
    result = outputLayer.calculate()
    outputM.printMaxLikelihood(result)
    print(result)