Esempio n. 1
0
    if dropbox_parameters:
        dropbox_params = DropboxConnection.Parameters(dropbox_parameters[0], dropbox_parameters[1])
        dropbox = DropboxConnection(dropbox_params)

        logger.info('Dropbox parameters:: dropbox_params: %s', dropbox_params)

    #Model file
    model_file = ModelInput(input_params.model_name)
    model_file_name = model_file.file_name(0, 0)

    #Input data file
    input_data_file = InputDataFile(constants.PREDICTION_INPUT_DATA_FILE_NAME_GUIDANCE)
    input_data_file_name = input_data_file.file_name(0, 0)

    #Prepare input files
    input_files_client = InputFiles(dropbox)
    input_files = input_files_client.get_all([input_data_file_name, model_file_name])

    #Assign input files
    input_data_file_path = input_files[input_data_file_name]
    model_file_path = input_files[model_file_name]

    #Load model
    model = load_model(str(model_file_path))

    #Input data frame
    input_data = read_csv(input_data_file_path, index_col = 0)

    #Update input data parameters
    num_classes = len(getattr(input_data, image_generation_params.label_col).unique())
    image_generation_params_update = dict(num_classes = num_classes)
Esempio n. 2
0
    def test_get_all_local_and_remote_files(self):
        #Arrange
        inputs = InputFiles(self._dropbox)
        inputs._dropbox.download = MagicMock()

        self.get_all(inputs, lambda: bool(randint(0, 1)))
Esempio n. 3
0
        dropbox = DropboxConnection(dropbox_params)

        logger.info('Dropbox parameters:: dropbox_params: %s', dropbox_params)

    #Predictable randomness
    seed = 3
    np_seed(seed)
    tf_seed(seed)
    imgaug_seed(seed)

    #Input data file
    input_data_file = InputDataFile()
    input_data_file_name = input_data_file.file_name(0, training_params.epoch_id)

    #Prepare input files
    input_files_client = InputFiles(dropbox)
    input_data_file_path = input_files_client.get_all([input_data_file_name])[input_data_file_name]

    #Input data frame
    input_data = read_csv(input_data_file_path, index_col = 0)

    #Update input data parameters
    num_classes = max(getattr(input_data, image_generation_params.label_col)) + 1
    image_generation_params_update = dict(num_classes = num_classes)
    update_params(image_generation_params, **image_generation_params_update)

    logger.info('Updated input data parameters: %s', input_params)
 
    #Model input
    model_input = ModelInput(input_params.model_name)
    model_file = model_input.file_name(training_params.batch_id, training_params.epoch_id)
Esempio n. 4
0
    def test_get_all_just_remote_files(self):
        #Arrange
        inputs = InputFiles(self._dropbox)
        inputs._dropbox.download = MagicMock()

        self.get_all(inputs, lambda: False)
Esempio n. 5
0
    def test_get_all_just_local_files(self):
        #Arrange
        inputs = InputFiles(self._dropbox)

        #Act & Assert
        self.get_all(inputs, lambda: True)
Esempio n. 6
0
 def test_init(self):
     #Valid inputs
     _ = InputFiles(self._dropbox)
Esempio n. 7
0
        'Input parameters:: input_data: %s label_col: %s output_file: %s log_to_console: %s',
        input_data, label_col, output_file, log_to_console)

    #Dropbox connection placeholder
    dropbox = None

    if dropbox_parameters:
        dropbox_params = DropboxConnection.Parameters(dropbox_parameters[0],
                                                      dropbox_parameters[1])
        dropbox = DropboxConnection(dropbox_params)

        logger.info('Dropbox parameters:: dropbox_params: %s', dropbox_params)

    ####################################### Prepare the input dataset [Start] ############################################
    #Prepare input files
    input_files_client = InputFiles(dropbox)
    input_data = input_files_client.get_all([input_data])[input_data]

    #Input data as pandas data frame
    input_data = csv_to_dataframe(input_data)
    ####################################### Prepare the input dataset [End] ############################################

    ####################################### Rebalance the dataset [Start] ############################################
    #Rebalance the data and obtain the statistics
    rebalancer = Rebalancing(input_data, label_col)
    result, pre_stats, post_stats = rebalancer.rebalance(statistics=True)
    ####################################### Rebalance the dataset [End] ############################################

    #Output to a file
    dataframe_to_csv(result, output_file)
    epoch_data_dirs, dropbox_parameters, log_to_console = parse_args()

    #Initialize logging
    logging.initialize(__file__, log_to_console=log_to_console)
    logger = logging.get_logger(__name__)

    #Log input parameters
    logger.info(
        'Running with parameters epoch_data_dirs: %s log_to_console: %d',
        epoch_data_dirs, log_to_console)

    #Dropbox connection
    dropbox = DropboxConnection.get_client_from_params(dropbox_parameters)

    #Prepare input files
    input_files_client = InputFiles(dropbox)

    #Epoch data files placeholder
    input_files = []

    ####################################### Prepare input files [Start] ############################################
    #Iterate over input epoch stores and enumerate their result files.
    for epoch_store in epoch_data_dirs:
        #Fetch the remote epoch data
        epoch_data = dropbox.list(epoch_store,
                                  constants.INPUT_RESULT_FILE_PREFIX)

        #Extract file paths from epoch data
        input_files.extend([file_path for file_path in epoch_data[0]])

    #Create local epoch store locations