def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append( UIMultiItem(name='features', datatype=float, required=True)) inputs.append( UIMultiItem(name='targets', datatype=float, required=True, output_item='predictions', is_output_datatype_derived=True)) return (inputs, [])
def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UIMultiItem( name='group1_in', datatype=None, description='String encoded array of sensor readings, 15 readings per 5 mins', output_item='group1_out', is_output_datatype_derived=True, output_datatype=None )) inputs.append(UIMultiItem( name='group2_in', datatype=None, description='String encoded array of sensor readings, 5 readings per 5 mins', output_item='group2_out', is_output_datatype_derived=True, output_datatype=None )) # define arguments that behave as function outputs outputs = [] return (inputs, outputs)
def build_ui(cls): #define arguments that behave as function inputs inputs = [] inputs.append( UIMultiItem(name='feature', datatype=float, required=True)) inputs.append( UISingleItem(name='target', datatype=float, required=True)) #define arguments that behave as function outputs outputs = [] outputs.append( UISingleItem(name='difference', datatype=float, required=True)) return (inputs, outputs)
def build_ui(cls): inputs = [] inputs.append( UIMultiItem(name='source', datatype=None, description=('Choose the data items' ' that you would like to' ' aggregate'), output_item='name', is_output_datatype_derived=True)) inputs.append( UIExpression(name='expression', description='Paste in or type an AS expression')) return (inputs, [])
def build_ui(cls): inputs = [] # Input variable name must be kept 'source' # Output variable name must be kept 'name' inputs.append( UIMultiItem(name='source', datatype=None, description=('Choose the data items' ' that you would like to' ' aggregate'), output_item='name', is_output_datatype_derived=True)) inputs.append( UIExpression( name='expression', description='Use ${GROUP} to reference the current grain.' 'All Pandas Series methods can be used on the grain.' 'For example, ${GROUP}.max() - ${GROUP}.min().')) return (inputs, [])
def build_ui(cls): inputs = [] outputs = [] inputs.append( UIMultiItem(name='input_items', datatype=None, description=('Choose the data items' ' that you would like to' ' aggregate'), output_item='output_items', is_output_datatype_derived=True)) aggregate_names = list(cls.get_available_methods().keys()) inputs.append( UISingle(name='aggregation_function', description='Choose aggregation function', values=aggregate_names)) return (inputs, outputs)