Esempio n. 1
0
 def build_ui(cls):
     # define arguments that behave as function inputs
     inputs = []
     inputs.append(
         UIMultiItem(name='features', datatype=float, required=True))
     inputs.append(
         UIMultiItem(name='targets',
                     datatype=float,
                     required=True,
                     output_item='predictions',
                     is_output_datatype_derived=True))
     return (inputs, [])
Esempio n. 2
0
    def build_ui(cls):

        # define arguments that behave as function inputs
        inputs = []
        inputs.append(UIMultiItem(
                name='group1_in',
                datatype=None,
                description='String encoded array of sensor readings, 15 readings per 5 mins',
                output_item='group1_out',
                is_output_datatype_derived=True, output_datatype=None
                ))
        inputs.append(UIMultiItem(
                name='group2_in',
                datatype=None,
                description='String encoded array of sensor readings, 5 readings per 5 mins',
                output_item='group2_out',
                is_output_datatype_derived=True, output_datatype=None
                ))

        # define arguments that behave as function outputs
        outputs = []
        return (inputs, outputs)
Esempio n. 3
0
    def build_ui(cls):
        #define arguments that behave as function inputs
        inputs = []
        inputs.append(
            UIMultiItem(name='feature', datatype=float, required=True))
        inputs.append(
            UISingleItem(name='target', datatype=float, required=True))
        #define arguments that behave as function outputs
        outputs = []
        outputs.append(
            UISingleItem(name='difference', datatype=float, required=True))

        return (inputs, outputs)
Esempio n. 4
0
    def build_ui(cls):
        inputs = []
        inputs.append(
            UIMultiItem(name='source',
                        datatype=None,
                        description=('Choose the data items'
                                     ' that you would like to'
                                     ' aggregate'),
                        output_item='name',
                        is_output_datatype_derived=True))

        inputs.append(
            UIExpression(name='expression',
                         description='Paste in or type an AS expression'))

        return (inputs, [])
Esempio n. 5
0
    def build_ui(cls):
        inputs = []
        # Input variable name must be kept 'source'
        # Output variable name must be kept 'name'
        inputs.append(
            UIMultiItem(name='source',
                        datatype=None,
                        description=('Choose the data items'
                                     ' that you would like to'
                                     ' aggregate'),
                        output_item='name',
                        is_output_datatype_derived=True))

        inputs.append(
            UIExpression(
                name='expression',
                description='Use ${GROUP} to reference the current grain.'
                'All Pandas Series methods can be used on the grain.'
                'For example, ${GROUP}.max() - ${GROUP}.min().'))
        return (inputs, [])
Esempio n. 6
0
    def build_ui(cls):

        inputs = []
        outputs = []
        inputs.append(
            UIMultiItem(name='input_items',
                        datatype=None,
                        description=('Choose the data items'
                                     ' that you would like to'
                                     ' aggregate'),
                        output_item='output_items',
                        is_output_datatype_derived=True))

        aggregate_names = list(cls.get_available_methods().keys())

        inputs.append(
            UISingle(name='aggregation_function',
                     description='Choose aggregation function',
                     values=aggregate_names))

        return (inputs, outputs)