Esempio n. 1
0
 def test_unit_weighted(self):
     # unit weights should be the same as no weights
     data = np.array([5, 2, 6, 4], dtype=np.float64)
     weights = np.ones_like(data)
     rms = RMS.aggregate(data, 0, weights=weights)
     expected_rms = 4.5
     self.assertAlmostEqual(rms, expected_rms)
Esempio n. 2
0
 def test_1d_weighted(self):
     # 1-dimensional input with weights
     data = np.array([4, 7, 10, 8], dtype=np.float64)
     weights = np.array([1, 4, 3, 2], dtype=np.float64)
     expected_rms = 8.0
     rms = RMS.aggregate(data, 0, weights=weights)
     self.assertAlmostEqual(rms, expected_rms)
Esempio n. 3
0
 def test_2d_weighted(self):
     # 2-dimensional input with weights
     data = np.array([[4, 7, 10, 8], [14, 16, 20, 8]], dtype=np.float64)
     weights = np.array([[1, 4, 3, 2], [2, 1, 1.5, 0.5]], dtype=np.float64)
     expected_rms = np.array([8.0, 16.0], dtype=np.float64)
     rms = RMS.aggregate(data, 1, weights=weights)
     self.assertArrayAlmostEqual(rms, expected_rms)
Esempio n. 4
0
 def test_unit_weighted(self):
     # unit weights should be the same as no weights
     data = np.array([5, 2, 6, 4], dtype=np.float64)
     weights = np.ones_like(data)
     rms = RMS.aggregate(data, 0, weights=weights)
     expected_rms = 4.5
     self.assertAlmostEqual(rms, expected_rms)
Esempio n. 5
0
 def test_2d_weighted(self):
     # 2-dimensional input with weights
     data = np.array([[4, 7, 10, 8], [14, 16, 20, 8]], dtype=np.float64)
     weights = np.array([[1, 4, 3, 2], [2, 1, 1.5, 0.5]], dtype=np.float64)
     expected_rms = np.array([8.0, 16.0], dtype=np.float64)
     rms = RMS.aggregate(data, 1, weights=weights)
     self.assertArrayAlmostEqual(rms, expected_rms)
Esempio n. 6
0
 def test_1d_weighted(self):
     # 1-dimensional input with weights
     data = np.array([4, 7, 10, 8], dtype=np.float64)
     weights = np.array([1, 4, 3, 2], dtype=np.float64)
     expected_rms = 8.0
     rms = RMS.aggregate(data, 0, weights=weights)
     self.assertAlmostEqual(rms, expected_rms)
Esempio n. 7
0
 def test_masked_weighted(self):
     # weights should work properly with masked arrays
     data = ma.array([4, 7, 18, 10, 11, 8], mask=[False, False, True, False, True, False], dtype=np.float64)
     weights = np.array([1, 4, 5, 3, 8, 2], dtype=np.float64)
     expected_rms = 8.0
     rms = RMS.aggregate(data, 0, weights=weights)
     self.assertAlmostEqual(rms, expected_rms)
Esempio n. 8
0
 def test_masked(self):
     # masked entries should be completely ignored
     data = ma.array([5, 10, 2, 11, 6, 4],
                     mask=[False, True, False, True, False, False],
                     dtype=np.float64)
     expected_rms = 4.5
     rms = RMS.aggregate(data, 0)
     self.assertAlmostEqual(rms, expected_rms)
Esempio n. 9
0
 def test_masked(self):
     # masked entries should be completely ignored
     data = ma.array([5, 10, 2, 11, 6, 4],
                     mask=[False, True, False, True, False, False],
                     dtype=np.float64)
     expected_rms = 4.5
     rms = RMS.aggregate(data, 0)
     self.assertAlmostEqual(rms, expected_rms)
Esempio n. 10
0
 def test_masked_weighted(self):
     # weights should work properly with masked arrays
     data = ma.array([4, 7, 18, 10, 11, 8],
                     mask=[False, False, True, False, True, False],
                     dtype=np.float64)
     weights = np.array([1, 4, 5, 3, 8, 2], dtype=np.float64)
     expected_rms = 8.0
     rms = RMS.aggregate(data, 0, weights=weights)
     self.assertAlmostEqual(rms, expected_rms)
Esempio n. 11
0
 def test_2d(self):
     # 2-dimensional input
     data = np.array([[5, 2, 6, 4], [12, 4, 10, 8]], dtype=np.float64)
     expected_rms = np.array([4.5, 9.0], dtype=np.float64)
     rms = RMS.aggregate(data, 1)
     self.assertArrayAlmostEqual(rms, expected_rms)
Esempio n. 12
0
 def test_1d(self):
     # 1-dimensional input
     data = np.array([5, 2, 6, 4], dtype=np.float64)
     rms = RMS.aggregate(data, 0)
     expected_rms = 4.5
     self.assertAlmostEqual(rms, expected_rms)
Esempio n. 13
0
 def test_2d(self):
     # 2-dimensional input
     data = np.array([[5, 2, 6, 4], [12, 4, 10, 8]], dtype=np.float64)
     expected_rms = np.array([4.5, 9.0], dtype=np.float64)
     rms = RMS.aggregate(data, 1)
     self.assertArrayAlmostEqual(rms, expected_rms)
Esempio n. 14
0
 def test_1d(self):
     # 1-dimensional input
     data = np.array([5, 2, 6, 4], dtype=np.float64)
     rms = RMS.aggregate(data, 0)
     expected_rms = 4.5
     self.assertAlmostEqual(rms, expected_rms)