def iris_isochron_fig(a, border=1., phase_offset=0., l = default_lambda): # set up the model parameters for this figure l_cw = -l l_ccw = 1 X = Y = 1. # calculate the isochrons mesh_points = 400 XX, YY = np.meshgrid( np.linspace(-(2*X + a/2), (2*X + a/2), mesh_points), np.linspace(-(2*Y + a/2), (2*Y + a/2), mesh_points), ) isochrons = iris.iris_isochron(XX, YY, a=a, l_ccw=l_ccw, l_cw=l_cw, X=X, Y=Y) # create a new figure fig = plt.figure(figsize=(6,6)) axes = fig.add_axes([0.1, 0.1, 0.8, 0.8]) indexes = np.array([[i, j] for i in range(-2,3) for j in range(-2,3)]) offsets = np.array([[i*2*X - a*j, j*2*Y + i*a] for i,j in indexes]) for i in range(len(offsets)): if indexes[i].sum() % 2 == 0: iris.draw_fancy_iris(axes, a, l_ccw, l_cw, X, Y, x0=np.nan, offset = offsets[i,:2]) contours = phase_offset + np.linspace( -3*math.pi, 14*math.pi, 128, endpoint=False) cool_colors = [(0, 0.6 + 0.3*math.sin(c), 0.7 + 0.3*math.cos(c)) for c in contours] hot_colors = [(0.6 + 0.3*math.cos(c), 0., 0.7 + 0.3*math.sin(c)) for c in contours] # draw the other limit cycles for i in range(len(offsets)): if indexes[i].sum() % 2 == 0: axes.contour(XX + offsets[i, 0], YY + offsets[i, 1], isochrons, contours, colors=(cool_colors, hot_colors)[indexes[i, 0] % 2]) # add lines at the edge of the squares to hide the contour discontinuity # where the phase wraps from 2 \pi to zero for i in range(len(offsets)): axes.plot([ a/2, a/2] + offsets[i, 0], [-a/2, -(2*Y+a/2)] + offsets[i, 1], 'k') axes.plot([-a/2, -(2*X+a/2)] + offsets[i, 0], [-a/2, -a/2] + offsets[i, 1], 'k') # center the plot and clean up the scale bars axes.set_xlim(-3*X-border, 3*X+border) axes.set_ylim(-3*Y-border, 3*Y+border) axes.set_xticks([]) axes.set_yticks([]) axes.set_frame_on(False) return fig
def iris_timeplot_fig(a_vals = sample_a_vals, border = 0.3): # set up the model parameters for this figure l_cw = -default_lambda l_ccw = 1 X = Y = 1. n_phis = np.linspace(0, 2*math.pi, 20*4 + 1) a_phis = np.linspace(0, 2*math.pi, 100*4 + 1) dx = 1e-4 dy = 0. mag = math.sqrt(dx**2 + dy**2) phasescale = 4 / (2 * math.pi) # convert from (0,2 \pi) to (0,4) # create a new figure fig = plt.figure(figsize=(6,6)) width = 1./len(a_vals) padding = 0.2*width for i in range(len(a_vals)): a = a_vals[i] axes = plt.axes((2*padding, 1-(i+1) * width+padding, 1 - width - 2*padding, width - 1.5*padding)) # draw the trajectory components vs. time r0 = iris.iris_fixedpoint(a, l_ccw, l_cw, X, Y, guess=1e-6*X) T = 4 * iris.dwell_time(r0, l_ccw, l_cw, X, Y) ts = np.linspace(0, 3*T, 1000); vals = integrate.odeint(iris.iris, [-a/2, -a/2 - Y + r0], ts, args=(a, l_ccw, l_cw, X, Y)) axes.plot(ts, vals[:,1], '-', color='0.8', lw=2) axes.plot(ts, vals[:,0], 'k-', lw=2) axes.set_xlim(0, 3*T) # make the y-axis symmetric around zero #ymaxabs = np.max(np.abs(axes.get_ylim())) ymaxabs = 1.2 axes.set_ylim(-ymaxabs, ymaxabs) # draw the phase plot for reference axes = plt.axes((1-width, 1-(i+1) * width, width, width)) iris.draw_fancy_iris(axes, a, l_ccw, l_cw, X, Y, scale=3.0, x0=np.nan) # center the plot and clean up the scale bars axes.set_xlim(-2*X-border, 2*X+border) axes.set_ylim(-2*Y-border, 2*Y+border) axes.set_xticks([]) axes.set_yticks([]) axes.set_frame_on(False) return fig
def iris_fig(a, border=1., label_theta0=True): # set up the model parameters for this figure l_cw = -default_lambda l_ccw = 1 X = Y = 1. # create a new figure fig = plt.figure(figsize=(5,5)) axes = fig.add_axes([0., 0., 1., 1.]) iris.draw_fancy_iris(axes, a, l_ccw, l_cw, X, Y) # add an arrow indicating theta = 0 if label_theta0: r0s = iris.iris_fixedpoint(a, l_ccw, l_cw, X, Y, guess=1e-6*X) if r0s != None: axes.annotate(r'$\theta = 0$', xy=(a/2, -X + r0s - a/2), xycoords='data', xytext=(15,15), textcoords='offset points', arrowprops=dict(arrowstyle='->', connectionstyle='angle,angleA=180,angleB=240,rad=10') ) r0u = iris.iris_fixedpoint(a, l_ccw, l_cw, X, Y, guess=1*X) if a != 0 and r0u != None: axes.annotate(r'', xy=(-X + r0u - a/2, -a/2), xycoords='data', xytext=(-15,15), textcoords='offset points', arrowprops=dict(arrowstyle='->', color='r', connectionstyle='angle,angleA=-180,angleB=-45,rad=0') ) if a != 0 and r0u != None: x0 = [-a/2, a/2 + Y - (0.9*r0u + 0.1*r0s)] elif a == 0: x0 = [-a/2, a/2 + Y - 0.9] else: x0 = [-a/2, 0.9*Y] axes.annotate(r'', xy=x0, xycoords='data', xytext=x0 + np.r_[-1.0e-3, 0.5e-3], textcoords='data', arrowprops=dict(arrowstyle='->', color='b', connectionstyle='arc3,rad=0') ) # center the plot and clean up the scale bars axes.set_xlim(-2*X-border, 2*X+border) axes.set_ylim(-2*Y-border, 2*Y+border) axes.set_xticks([]) axes.set_yticks([]) axes.set_frame_on(False) return fig
def iris_prc_fig(a_vals = sample_a_vals, border = 0.3): # set up the model parameters for this figure l_cw = -default_lambda l_ccw = 1 X = Y = 1. n_phis = np.linspace(0, 2*math.pi, 20*4 + 1) a_phis = np.linspace(0, 2*math.pi, 100*4 + 1) dx = 1e-4 dy = 0. mag = math.sqrt(dx**2 + dy**2) phasescale = 4 / (2 * math.pi) # convert from (0,2 \pi) to (0,4) # create a new figure fig = plt.figure(figsize=(6,6)) width = 1./len(a_vals) padding = 0.2*width for i in range(len(a_vals)): a = a_vals[i] axes = plt.axes((2*padding, 1-(i+1) * width+padding, 1 - width - 2*padding, width - 1.5*padding)) # draw the orthogonal prc found analytically a_prc_o = np.array([ iris.analytic_phase_reset(phi, dx=-dy, dy=dx, a=a, l_ccw=l_ccw, l_cw=l_cw) for phi in a_phis ]) axes.plot(a_phis, a_prc_o/mag*phasescale, color='0.8') # draw the orthogonal prc found numerically n_prc_o = np.array([ iris.phase_reset(phi, dx=-dy, dy=dx, a=a, l_ccw=l_ccw, l_cw=l_cw, steps_per_cycle=100000) for phi in n_phis ]) axes.plot(n_phis, n_prc_o/mag*phasescale, 'o', markersize=3, markeredgecolor='0.8', color='0.8') # draw the prc found analytically a_prc = np.array([ iris.analytic_phase_reset(phi, dx=dx, dy=dy, a=a, l_ccw=l_ccw, l_cw=l_cw) for phi in a_phis ]) axes.plot(a_phis, a_prc/mag*phasescale, 'k') # draw the prc found numerically n_prc = np.array([ iris.phase_reset(phi, dx=dx, dy=dy, a=a, l_ccw=l_ccw, l_cw=l_cw, steps_per_cycle=100000) for phi in n_phis ]) axes.plot(n_phis, n_prc/mag*phasescale, 'bo', markersize=3) # clean up the axes axes.set_xlim(0, 2*math.pi) plt.xticks(np.arange(5.)*math.pi/2, #['$0$', '$\\pi/2$', '$\\pi$', # '$3\\pi/2$', '$2\\pi$']) # phase rescaled from 0 to 4 to match analysis ['$0$', '$1$', '$2$', '$3$', '$4$']) # make the y-axis symmetric around zero ymaxabs = np.max(np.abs(axes.get_ylim())) axes.set_ylim(-ymaxabs, ymaxabs) # draw the phase plot for reference axes = plt.axes((1-width, 1-(i+1) * width, width, width)) iris.draw_fancy_iris(axes, a, l_ccw, l_cw, X, Y, scale=3.0, x0=np.nan) # center the plot and clean up the scale bars axes.set_xlim(-2*X-border, 2*X+border) axes.set_ylim(-2*Y-border, 2*Y+border) axes.set_xticks([]) axes.set_yticks([]) axes.set_frame_on(False) return fig