def U_wash(self): """ U_wash provides a list the following outputs for the Age Calculation: [0]: 233 unfiltered wash in cps [1]: 234 unfiltered wash in cps [2]: 234 unfiltered wash in cps """ #233 wash value working_a = isofilter.IsoFilter(self.filename_U, "C", 44) self.three_wash = working_a.getMean() #234 wash value working_b = isofilter.IsoFilter(self.filename_U, "D", 44) self.four_wash = working_b.getMean() #235 wash value working_c = isofilter.IsoFilter(self.filename_U, "E", 44) self.five_wash = working_c.getMean() while self.inquiry: print "BACKGROUND VALUES FOR AGE CALC:" print "233 wash value: " + str(self.three_wash) + ' cps' print "234 wash value: " + str(self.four_wash) + ' cps' print "235 wash value: " + str(self.five_wash) + ' cps' break lstU_wash = [self.three_wash, self.four_wash, self.five_wash] return lstU_wash
def Th_wash(self): """ Th_wash provides a list of the following outputs for the Age Calculation: [0]: 230 unfiltered wash in cpm """ #230 wash value working_a = isofilter.IsoFilter(self.filename_Th, "D", 28) self.zero_wash = working_a.getMean() #calculate "darknoise" value for Age calculation self.darknoise = self.zero_wash * 60 while self.inquiry: print "230 wash value/darknoise: " + str(self.darknoise) + ' cpm' break return self.darknoise
def __init__(self, spike_input, AS_input, filename_input, inquiry_input): spike = str(spike_input) spike_six_three_dictionary = { "DIII-B": 1.008398, "DIII-A": 1.008398, "1I": 1.010128, "1H": 1.010128 } #derives 236/233 value of spike from preset dictionary if spike in spike_six_three_dictionary: self.spike = float(spike_six_three_dictionary[spike]) else: print 'ERROR: You did not enter a valid spike option' #allows you the ability to print as you go inquiry = str(inquiry_input) if inquiry.lower() == "y": self.inquiry = True else: self.inquiry = False print "Program ran but without printing" #AS is the abundant sensitivity 237/238, measured through the AS method on the ICP-MS self.AS = float(AS_input) #uses the filename given for your U run filename = str(filename_input) #236/233 filtered measured mean and 2s error working = isofilter.IsoFilter(filename, "G", 44) a = working.getMean() b = working.getStanddev() c = working.getCounts() self.six_three_mean_meas = working.Filtered_mean(a, b, c) self.six_three_err_meas = working.Filtered_err(a, b, c) #235/233 filtered measured mean and 2s error working_b = isofilter.IsoFilter(filename, "H", 44) a = working_b.getMean() b = working_b.getStanddev() c = working_b.getCounts() self.five_three_mean_meas = working_b.Filtered_mean(a, b, c) self.five_three_err_meas = working_b.Filtered_err(a, b, c) #234/235 filtered measured mean and 2s error working_c = isofilter.IsoFilter(filename, "I", 44) a = working_c.getMean() b = working_c.getStanddev() c = working_c.getCounts() self.four_five_mean_meas = working_c.Filtered_mean(a, b, c) self.four_five_err_meas = working_c.Filtered_err(a, b, c) self.four_five_counts = working_c.Filtered_counts(a, b, c) #233 unfiltered mean and counts working_d = isofilter.IsoFilter(filename, "C", 44) self.three_mean_meas = working_d.getMean() self.three_counts = working_d.getCounts() #constants to be used throughout the class self.wt_235 = 235.043924 self.wt_233 = 233.039629 self.wt_236 = 236.045563 self.wt_234 = 234.040947 self.eight_five_rat = 137.83 self.AS_six_eight = self.AS / 5 self.AS_four_eight = self.AS / 20 self.eight_five_rat_err_rel = 0.0003
def __init__(self, spike_input, AS_input, filename_input, inquiry_input, lstU_Th): spike = str(spike_input) spike_six_three_dictionary = { "DIII-B": 1.008398, "DIII-A": 1.008398, "1I": 1.010128, "1H": 1.010128 } #derives 236/233 value of spike from preset dictionary if spike in spike_six_three_dictionary: self.spike = float(spike_six_three_dictionary[spike]) else: print 'ERROR: You did not enter a valid spike option' #allows you the ability to print as you go inquiry = str(inquiry_input) if inquiry.lower() == "y": self.inquiry = True else: self.inquiry = False print "Program ran but without printing" #AS is the abundant sensitivity 237/238, measured through the AS method on the ICP-MS self.AS = float(AS_input) #uses the filename given for your Th run filename = str(filename_input) #Compiles the values of the lstU_Th provided by your U_normalization_forTh function self.six_three_mean_meas = lstU_Th[0] self.six_three_err_meas = lstU_Th[1] self.five_three_norm = lstU_Th[2] self.five_three_norm_err = lstU_Th[3] self.six_three_corr = lstU_Th[4] self.six_three_corr_err = lstU_Th[5] #Note: Hai's macro only filters 230/229 column #230/232 filtered measured mean and 2s error working = isofilter.IsoFilter(filename, "G", 28) self.zero_two_mean_meas = working.getMean() / 1.02 self.zero_two_counts = working.getCounts() self.zero_two_standdev_meas = working.getStanddev() self.zero_two_rel_err_meas = ( 2 * self.zero_two_standdev_meas / (self.zero_two_counts**0.5)) / self.zero_two_mean_meas self.zero_two_rel_err = max(self.zero_two_rel_err_meas, 0.02) self.zero_two_err_meas = self.zero_two_mean_meas * self.zero_two_rel_err #230/229 filtered measured mean and 2s error working_b = isofilter.IsoFilter(filename, "E", 28) a = working_b.getMean() b = working_b.getStanddev() c = working_b.getCounts() self.zero_nine_mean_meas = working_b.Filtered_mean(a, b, c) self.zero_nine_err_meas = working_b.Filtered_err(a, b, c) #232/229 filtered measured mean and 2s error working_c = isofilter.IsoFilter(filename, "F", 28) self.nine_two_mean_meas = working_c.getMean() self.two_nine_mean_meas = 1 / (self.nine_two_mean_meas / 1.02) self.two_nine_counts = working.getCounts() self.nine_two_standdev_meas = working_c.getStanddev() self.nine_two_rel_err_meas = ( 2 * self.nine_two_standdev_meas / (self.two_nine_counts**0.5)) / self.nine_two_mean_meas self.two_nine_rel_err = max(self.nine_two_rel_err_meas, 0.02) self.two_nine_err_meas = self.two_nine_mean_meas * self.two_nine_rel_err #229 unfiltered mean and counts working_d = isofilter.IsoFilter(filename, "C", 28) self.nine_mean_meas = working_d.getMean() self.nine_counts = working_d.getCounts() #constants to be used throughout the class self.wt_233 = 233.039629 self.wt_236 = 236.045563 self.wt_229 = 229.031756 self.wt_230 = 230.033128 self.wt_232 = 232.038051 self.AS_zero_nine = self.AS self.AS_zero_two = self.AS_zero_nine / 5 self.AS_two_nine = self.AS_zero_two / 3 self.eight_five_rat = 137.83 self.eight_five_rat_err_rel = 0.0003