Esempio n. 1
0
# set the flow equation of type `mdl_odr` defined above :
md = im.setflowequation(md, mdl_odr, 'all')
md.flowequation.fe_HO = 'P1'

## set for no-slip basal velocity BC (replaced with high friction above) :
#basal_v                         = md.mesh.vertexonbase
#md.stressbalance.spcvx[basal_v] = 0.0
#md.stressbalance.spcvy[basal_v] = 0.0
#md.stressbalance.spcvz[basal_v] = 0.0

#===============================================================================
# solve :
print_text('::: issm -- solving :::', 'red')

md.cluster = im.generic('name', im.gethostname(), 'np', 1)
md.verbose = im.verbose('convergence', True)
if tmc: md = im.solve(md, 'SteadyState')
else: md = im.solve(md, 'StressBalance')

#===============================================================================
# plot the results :
print_text('::: issm -- plotting :::', 'red')

p = md.results.StressbalanceSolution.Pressure[md.mesh.vertexonbase]
u_x = md.results.StressbalanceSolution.Vx[md.mesh.vertexonsurface]
u_y = md.results.StressbalanceSolution.Vy[md.mesh.vertexonsurface]
u_z = md.results.StressbalanceSolution.Vz[md.mesh.vertexonsurface]
u = np.array([u_x.flatten(), u_y.flatten(), u_z.flatten()])

# save the mesh coordinates and data for interpolation with CSLVR :
np.savetxt(out_dir + 'x.txt', md.mesh.x2d)
Esempio n. 2
0
md = im.SetMarineIceSheetBC(md)  # create placeholder arrays for indicies 

# extrude the mesh so that there are 5 cells in height :
md.extrude(6, 1.0)

# set the flow equation of type `mdl_odr` defined above :
md = im.setflowequation(md, mdl_odr, 'all')
md.flowequation.fe_HO = 'P1'


#===============================================================================
# solve :
print_text('::: issm -- solving initial velocity :::', 'red')

md.cluster = im.generic('name', im.gethostname(), 'np', 1)
md.verbose = im.verbose('convergence', True)
md         = im.solve(md, 'Stressbalance')


#===============================================================================
# FIXME: since the model was extruded, we have to re-define the element-wise 
#        multiplicative identities.  This is not ideal :

# rank-zero tensor vertex ones vector :
v_ones = np.ones(md.mesh.numberofvertices)

# rank-zero tensor element ones vector :
e_ones = np.ones(md.mesh.numberofelements)

# rank-two tensor ones vector :
A_ones = np.ones((md.mesh.numberofvertices, 6))