def task_test_cnn(args): dataset = ImageIterator(args.input, args.output) dataset_batches = BatchGenerator(dataset, args.batch) from mitosis import model_base, model_1, model_2 TT.debug("Compile base model.") model = model_base(0) TT.debug("Compile model 1.") model1 = model_1(0) TT.debug("Compile model 2.") model2 = model_2(0) model_saved_weights_path = os.path.join(args.path, 'base-model.weights.npy') model1_saved_weights_path = os.path.join(args.path, 'model1.weights.npy') model2_saved_weights_path = os.path.join(args.path, 'model2.weights.npy') TT.info("Loading weights from %s" % model_saved_weights_path) model.load_weights(model_saved_weights_path) TT.info("Loading weights from %s" % model1_saved_weights_path) model1.load_weights(model1_saved_weights_path) TT.info("Loading weights from %s" % model2_saved_weights_path) model2.load_weights(model2_saved_weights_path) test_start = time.time() out = out1 = out2 = None for x, y in dataset_batches: tmp = model.predict(x, args.mini_batch, args.verbose) local1 = numpy.zeros(tmp.shape) local2 = numpy.zeros(tmp.shape) out = np_append(out, tmp) x = 1. - x x_new = [] indices = [] for i in range(len(tmp)): if tmp[i][0] > .6: x_new.append(x[i]) indices.append(i) x_new = numpy.asarray(x_new) if len(x_new): tmp1 = model1.predict(x_new, args.mini_batch, args.verbose) local1[indices] = tmp1 out1 = np_append(out1, local1) if len(x_new): tmp2 = model2.predict(x_new, args.mini_batch, args.verbose) local2[indices] = tmp2 out2 = np_append(out2, local2) width, height = dataset.image_size out = numpy.reshape(out[:, 0], (height, width)) out1 = numpy.reshape(out1[:, 0], (height, width)) out2 = numpy.reshape(out2[:, 0], (height, width)) numpy.save(change_ext(args.input, 'predicted.npy'), out) numpy.save(change_ext(args.input, 'model1.predicted.npy'), out1) numpy.save(change_ext(args.input, 'model2.predicted.npy'), out2) numpy.save(change_ext(args.input, 'expected.npy'), dataset.output) TT.success("Testing finished in %.2f minutes." % ((time.time() - test_start) / 60.))
def task_test_filter(args): dataset = ImageIterator(args.input, args.output) dataset_batches = BatchGenerator(dataset, args.batch) from mitosis import model_base TT.debug("Compile base model.") model = model_base(args.lr) model_saved_weights_path = os.path.join(args.path, 'base-model.weights.npy') TT.info("Loading weights from %s" % model_saved_weights_path) model.load_weights(model_saved_weights_path) test_start = time.time() out = None for x, y in dataset_batches: tmp = model.predict(x, args.mini_batch, args.verbose) out = np_append(out, tmp) width, height = dataset.image_size out = numpy.reshape(out[:, 0], (height, width)) numpy.save(change_ext(args.input, 'predicted.npy'), out) numpy.save(change_ext(args.input, 'expected.npy'), dataset.output) TT.success("Testing finished in %.2f minutes." % ((time.time() - test_start) / 60.))
# Fix Import from test import root_path # Actual Imports from utilities import TT from iterators import BatchGenerator, Dataset, ImageIterator from dataset import icpr2012 root = root_path() # 1. Test BatchGenerator # flt, mapper = icpr2012() TT.verbose = True # batches = BatchGenerator(Dataset(root+'/datasets/ICPR 2012/testing/set1', mapper=mapper, filename_filter=flt), 1000, 500) # for batch in batches: # continue batches = BatchGenerator(ImageIterator(root + '/tests/patch_at/utilities.tiff', root + '/tests/patch_at/utilities.csv'), batch_size=1000) for batch in batches: continue