def get_structure_renaming(state): """ state is an ivy_interp.State with a .universe result is a dictionary mapping universe constant names to prettier names that should be used for displaying to the user """ from ivy_utils import topological_sort # add node_info results for universe elements elements = list(set([uc for s in state.universe for uc in state.universe[s]])) # name according to topological sort # TODO: make this not specific to leader example state_formula = state.clauses.to_formula() assert type(state_formula) is And order = [] for lit in state_formula: if type(lit) is Apply and lit.func.sort.arity == 2 and lit.func.name in ('reach', 'le'): order.append(lit.terms) elements = topological_sort(elements, order, lambda c: c.name) result = dict() count = defaultdict(int) for c in elements: prefix = str(c.sort).lower() result[c.name] = prefix + str(count[prefix]) count[prefix] += 1 return result
def get_mixin_order(iso, mod): arcs = [(rdf.args[0].relname, rdf.args[1].relname) for rdf in mod.mixord] actions = mod.mixins.keys() for action in actions: mixins = mod.mixins[action] implements = [ m for m in mixins if isinstance(m, ivy_ast.MixinImplementDef) ] if len(implements) > 1: raise iu.IvyError(implements[1], 'Multiple implementations for {}'.format(action)) mixins = [ m for m in mixins if not isinstance(m, ivy_ast.MixinImplementDef) ] mixers = iu.topological_sort(list(set(m.mixer() for m in mixins)), arcs) keymap = dict((x, y) for y, x in enumerate(mixers)) key = lambda m: keymap[m.mixer()] before = sorted( [m for m in mixins if isinstance(m, ivy_ast.MixinBeforeDef)], key=key) after = sorted( [m for m in mixins if isinstance(m, ivy_ast.MixinAfterDef)], key=key) # order = SortOrder(arcs) # before = sorted([m for m in mixins if isinstance(m,ivy_ast.MixinBeforeDef)],order) # after = sorted([m for m in mixins if isinstance(m,ivy_ast.MixinAfterDef)],order) before.reverse() # add the before mixins in reverse order mixins = implements + before + after # print 'mixin order for action {}:' # for m in mixins: # print m.args[0] mod.mixins[action] = mixins
def sort_nodes(self,nodes): g = self.g order = [] nodes_by_name = dict((x.name,x) for x in nodes) for r in g.relations: if r.arity() != 2: continue ena = self.get_enabled(r) if ena[0].get() and ena[3].get(): # if positive arcs enabled and transitive r.properties['reflexive'] = False r.properties['transitive'] = False for e in r.get_edges(): (x,y),status = e if status == 'true': order.append((nodes_by_name[x.name],nodes_by_name[y.name])) nodes = topological_sort(nodes,order,lambda n: n.name) return nodes
def get_mixin_order(iso,mod): arcs = [(rdf.args[0].relname,rdf.args[1].relname) for rdf in mod.mixord] actions = mod.mixins.keys() for action in actions: mixins = mod.mixins[action] mixers = iu.topological_sort(list(set(m.mixer() for m in mixins)),arcs) keymap = dict((x,y) for y,x in enumerate(mixers)) key = lambda m: keymap[m.mixer()] before = sorted([m for m in mixins if isinstance(m,ivy_ast.MixinBeforeDef)],key=key) after = sorted([m for m in mixins if isinstance(m,ivy_ast.MixinAfterDef)],key=key) # order = SortOrder(arcs) # before = sorted([m for m in mixins if isinstance(m,ivy_ast.MixinBeforeDef)],order) # after = sorted([m for m in mixins if isinstance(m,ivy_ast.MixinAfterDef)],order) before.reverse() # add the before mixins in reverse order mixins = before + after # print 'mixin order for action {}:' # for m in mixins: # print m.args[0] mod.mixins[action] = mixins
def dot_layout(cy_elements, edge_labels=False, subgraph_boxes=False, node_gt=None): """ Get a CyElements object and augment it (in-place) with positions, widths, heights, and spline data from a dot based layout. edge_labels is true if labels should appear on edges subgraph_boxes is true if boxes should be drawn around subgraphs Returns the object. """ elements = cy_elements.elements # g = AGraph(directed=True, strict=False) g = AGraph(directed=True, strict=False, forcelabels=True) # make transitive relations appear top to bottom elements = list(elements) nodes_by_id = dict((e["data"]["id"], e) for e in elements if e["group"] == "nodes") order = [ (nodes_by_id[e["data"]["source"]], nodes_by_id[e["data"]["target"]]) for e in elements if e["group"] == "edges" and "transitive" in e["data"] and e["data"]["transitive"] ] elements = topological_sort(elements, order, lambda e: e["data"]["id"]) # get the node id's and stable sort them by cluster # the idea here is to convert the graph into a dag by sorting # the nodes, then reversing the back edges. In particular, we try to make # all the edges between two clusters go in the same direction so clustering # doesn't result in horizontal edges, which dot renders badly. sorted_nodes = [e["data"]["id"] for e in elements if e["group"] == "nodes"] sorted_nodes = sorted(enumerate(sorted_nodes), key=lambda x: (nodes_by_id[x[1]]["data"]["cluster"], x[0])) sorted_nodes = [y for idx, y in sorted_nodes] node_key = dict((id, idx) for idx, id in enumerate(sorted_nodes)) if node_gt is None: node_gt = lambda X, y: False else: node_gt = lambda x, y: node_key[x] > node_key[y] # add nodes to the graph for e in elements: if e["group"] == "nodes" and e["classes"] != "non_existing": g.add_node(e["data"]["id"], label=e["data"]["label"].replace("\n", "\\n")) # TODO: remove this, it's specific to leader_demo weight = {"reach": 10, "le": 10, "id": 1} constraint = {"pending": False} # add edges to the graph for e in elements: if e["group"] == "edges": # kwargs = {'weight': weight.get(e["data"]["obj"], 0)}, kwargs = {"label": e["data"]["label"]} if edge_labels else {} if node_gt(e["data"]["source"], e["data"]["target"]): g.add_edge( e["data"]["target"], e["data"]["source"], e["data"]["id"], dir="back", **kwargs # constraint=constraint.get(e["data"]["obj"], True), ) else: g.add_edge( e["data"]["source"], e["data"]["target"], e["data"]["id"], **kwargs # constraint=constraint.get(e["data"]["obj"], True), ) # add clusters clusters = defaultdict(list) for e in elements: if e["group"] == "nodes" and e["data"]["cluster"] is not None and e["classes"] != "non_existing": clusters[e["data"]["cluster"]].append(e["data"]["id"]) for i, k in enumerate(sorted(clusters.keys())): g.add_subgraph(name="cluster_{}".format(i), nbunch=clusters[k], rank="min") # now get positions, heights, widths, and bsplines g.layout(prog="dot") # get the y origin. we want the top left of the graph to be a # fixed coordinate (hopefully (0,0)) so the graph doesn't jump when # its height changes. Unfortunately, pygraphviz has a bug a gives # the wrong bbox, so we compute the max y coord. # bbox = pygraphviz.graphviz.agget(g.handle,'bb') global y_origin y_origin = 0.0 for n in g.nodes(): top = float(n.attr["pos"].split(",")[1]) + float(n.attr["height"]) / 2 if top > y_origin: y_origin = top if subgraph_boxes: for sg in g.subgraphs(): top = float(sg.graph_attr["bb"].split(",")[3]) if top > y_origin: y_origin = top for e in elements: if e["group"] == "nodes" and e["classes"] != "non_existing": attr = g.get_node(e["data"]["id"]).attr e["position"] = _to_position(attr["pos"]) e["data"]["width"] = 72 * float(attr["width"]) e["data"]["height"] = 72 * float(attr["height"]) elif e["group"] == "edges": if node_gt(e["data"]["source"], e["data"]["target"]): attr = g.get_edge(e["data"]["target"], e["data"]["source"], e["data"]["id"]).attr pos = attr["pos"] pe = pos.split() ppe = pe[1:] ppe.reverse() pos = " ".join([pe[0].replace("s", "e")] + ppe) else: attr = g.get_edge(e["data"]["source"], e["data"]["target"], e["data"]["id"]).attr pos = attr["pos"] e["data"].update(_to_edge_position(pos)) if edge_labels and e["data"]["label"] != "": e["data"]["lp"] = _to_position(attr["lp"]) # g.draw('g.png') if subgraph_boxes: for sg in g.subgraphs(): box = cy_elements.add_shape(sg.name, classes="subgraphs") coords = _to_coord_list(sg.graph_attr["bb"]) box["data"]["coords"] = coords return cy_elements
def dot_layout(cy_elements): """ Get a CyElements object and augment it (in-place) with positions, widths, heights, and spline data from a dot based layout. Returns the object. """ elements = cy_elements.elements g = AGraph(directed=True, strict=False) # make transitive relations appear top to bottom # TODO: make this not specific to leader example elements = list(elements) nodes_by_id = dict( (e["data"]["id"], e) for e in elements if e["group"] == "nodes") order = [(nodes_by_id[e["data"]["source"]], nodes_by_id[e["data"]["target"]]) for e in elements if e["group"] == "edges" and e["data"]["obj"] in ('reach', 'le')] elements = topological_sort(elements, order, lambda e: e["data"]["id"]) # add nodes to the graph for e in elements: if e["group"] == "nodes": g.add_node(e["data"]["id"], label=e["data"]["label"].replace('\n', '\\n')) # TODO: remove this, it's specific to leader_demo weight = { 'reach': 10, 'le': 10, 'id': 1, } constraint = { 'pending': False, } # add edges to the graph for e in elements: if e["group"] == "edges": g.add_edge( e["data"]["source"], e["data"]["target"], e["data"]["id"], weight=weight.get(e["data"]["obj"], 0), #constraint=constraint.get(e["data"]["obj"], True), ) # add clusters clusters = defaultdict(list) for e in elements: if e["group"] == "nodes" and e["data"]["cluster"] is not None: clusters[e["data"]["cluster"]].append(e["data"]["id"]) for i, k in enumerate(sorted(clusters.keys())): g.add_subgraph( name='cluster_{}'.format(i), nbunch=clusters[k], ) # now get positions, heights, widths, and bsplines g.layout(prog='dot') for e in elements: if e["group"] == "nodes": attr = g.get_node(e["data"]["id"]).attr e["position"] = _to_position(attr['pos']) e["data"]["width"] = 72 * float(attr['width']) e["data"]["height"] = 72 * float(attr['height']) elif e["group"] == "edges": attr = g.get_edge(e["data"]["source"], e["data"]["target"], e["data"]["id"]).attr e["data"].update(_to_edge_position(attr['pos'])) g.draw('g.png') return cy_elements
def dot_layout(cy_elements, edge_labels=False, subgraph_boxes=False, node_gt=None): """ Get a CyElements object and augment it (in-place) with positions, widths, heights, and spline data from a dot based layout. edge_labels is true if labels should appear on edges subgraph_boxes is true if boxes should be drawn around subgraphs Returns the object. """ elements = cy_elements.elements # g = AGraph(directed=True, strict=False) g = AGraph(directed=True, strict=False, forcelabels=True) # make transitive relations appear top to bottom elements = list(elements) nodes_by_id = dict( (e["data"]["id"], e) for e in elements if e["group"] == "nodes") order = [(nodes_by_id[e["data"]["source"]], nodes_by_id[e["data"]["target"]]) for e in elements if e["group"] == "edges" and "transitive" in e["data"] and e["data"]["transitive"]] elements = topological_sort(elements, order, lambda e: e["data"]["id"]) # get the node id's and stable sort them by cluster # the idea here is to convert the graph into a dag by sorting # the nodes, then reversing the back edges. In particular, we try to make # all the edges between two clusters go in the same direction so clustering # doesn't result in horizontal edges, which dot renders badly. sorted_nodes = [e["data"]["id"] for e in elements if e["group"] == "nodes"] sorted_nodes = sorted(enumerate(sorted_nodes), key=lambda x: (nodes_by_id[x[1]]["data"]["cluster"], x[0])) sorted_nodes = [y for idx, y in sorted_nodes] node_key = dict((id, idx) for idx, id in enumerate(sorted_nodes)) if node_gt is None: node_gt = lambda X, y: False else: node_gt = lambda x, y: node_key[x] > node_key[y] # add nodes to the graph for e in elements: if e["group"] == "nodes" and e["classes"] != 'non_existing': g.add_node(e["data"]["id"], label=e["data"]["label"].replace('\n', '\\n')) # TODO: remove this, it's specific to leader_demo weight = { 'reach': 10, 'le': 10, 'id': 1, } constraint = { 'pending': False, } # add edges to the graph for e in elements: if e["group"] == "edges": # kwargs = {'weight': weight.get(e["data"]["obj"], 0)}, kwargs = {'label': e["data"]["label"]} if edge_labels else {} if node_gt(e["data"]["source"], e["data"]["target"]): g.add_edge(e["data"]["target"], e["data"]["source"], e["data"]["id"], dir='back', **kwargs #constraint=constraint.get(e["data"]["obj"], True), ) else: g.add_edge(e["data"]["source"], e["data"]["target"], e["data"]["id"], **kwargs #constraint=constraint.get(e["data"]["obj"], True), ) # add clusters clusters = defaultdict(list) for e in elements: if e["group"] == "nodes" and e["data"][ "cluster"] is not None and e["classes"] != 'non_existing': clusters[e["data"]["cluster"]].append(e["data"]["id"]) for i, k in enumerate(sorted(clusters.keys())): g.add_subgraph( name='cluster_{}'.format(i), nbunch=clusters[k], rank='min', ) # now get positions, heights, widths, and bsplines g.layout(prog='dot') # get the y origin. we want the top left of the graph to be a # fixed coordinate (hopefully (0,0)) so the graph doesn't jump when # its height changes. Unfortunately, pygraphviz has a bug a gives # the wrong bbox, so we compute the max y coord. # bbox = pygraphviz.graphviz.agget(g.handle,'bb') global y_origin y_origin = 0.0 for n in g.nodes(): top = float(n.attr['pos'].split(',')[1]) + float(n.attr['height']) / 2 if top > y_origin: y_origin = top if subgraph_boxes: for sg in g.subgraphs(): top = float(sg.graph_attr['bb'].split(',')[3]) if top > y_origin: y_origin = top for e in elements: if e["group"] == "nodes" and e["classes"] != 'non_existing': attr = g.get_node(e["data"]["id"]).attr e["position"] = _to_position(attr['pos']) e["data"]["width"] = 72 * float(attr['width']) e["data"]["height"] = 72 * float(attr['height']) elif e["group"] == "edges": if node_gt(e["data"]["source"], e["data"]["target"]): attr = g.get_edge(e["data"]["target"], e["data"]["source"], e["data"]["id"]).attr pos = attr['pos'] pe = pos.split() ppe = pe[1:] ppe.reverse() pos = ' '.join([pe[0].replace('s', 'e')] + ppe) else: attr = g.get_edge(e["data"]["source"], e["data"]["target"], e["data"]["id"]).attr pos = attr['pos'] e["data"].update(_to_edge_position(pos)) if edge_labels and e["data"]["label"] != '': e["data"]["lp"] = _to_position(attr['lp']) # g.draw('g.png') if subgraph_boxes: for sg in g.subgraphs(): box = cy_elements.add_shape(sg.name, classes='subgraphs') coords = _to_coord_list(sg.graph_attr['bb']) box["data"]["coords"] = coords return cy_elements
def dot_layout(cy_elements): """ Get a CyElements object and augment it (in-place) with positions, widths, heights, and spline data from a dot based layout. Returns the object. """ elements = cy_elements.elements g = AGraph(directed=True, strict=False) # make transitive relations appear top to bottom # TODO: make this not specific to leader example elements = list(elements) nodes_by_id = dict( (e["data"]["id"], e) for e in elements if e["group"] == "nodes" ) order = [ (nodes_by_id[e["data"]["source"]], nodes_by_id[e["data"]["target"]]) for e in elements if e["group"] == "edges" and e["data"]["obj"] in ('reach', 'le') ] elements = topological_sort(elements, order, lambda e: e["data"]["id"]) # add nodes to the graph for e in elements: if e["group"] == "nodes": g.add_node(e["data"]["id"], label=e["data"]["label"].replace('\n', '\\n')) # TODO: remove this, it's specific to leader_demo weight = { 'reach': 10, 'le': 10, 'id': 1, } constraint = { 'pending': False, } # add edges to the graph for e in elements: if e["group"] == "edges": g.add_edge( e["data"]["source"], e["data"]["target"], e["data"]["id"], weight=weight.get(e["data"]["obj"], 0), #constraint=constraint.get(e["data"]["obj"], True), ) # add clusters clusters = defaultdict(list) for e in elements: if e["group"] == "nodes" and e["data"]["cluster"] is not None: clusters[e["data"]["cluster"]].append(e["data"]["id"]) for i, k in enumerate(sorted(clusters.keys())): g.add_subgraph( name='cluster_{}'.format(i), nbunch=clusters[k], ) # now get positions, heights, widths, and bsplines g.layout(prog='dot') for e in elements: if e["group"] == "nodes": attr = g.get_node(e["data"]["id"]).attr e["position"] = _to_position(attr['pos']) e["data"]["width"] = 72 * float(attr['width']) e["data"]["height"] = 72 * float(attr['height']) elif e["group"] == "edges": attr = g.get_edge(e["data"]["source"], e["data"]["target"], e["data"]["id"]).attr e["data"].update(_to_edge_position(attr['pos'])) g.draw('g.png') return cy_elements