Esempio n. 1
0
    def step(self, feed_dict, reduce_func=default_reduce_func):
        assert self._model.training, 'Step a evaluation-mode model.'

        self.trigger_event('step:before', self)

        feed_dict = as_variable(feed_dict)

        begin = time.time()

        self.trigger_event('forward:before', self, feed_dict)
        loss, monitors, output_dict = self._model(feed_dict)
        self.trigger_event('forward:after', self, feed_dict, loss, monitors,
                           output_dict)

        loss = reduce_func('loss', loss)
        monitors = {k: reduce_func(k, v) for k, v in monitors.items()}

        loss_f = as_float(loss)
        monitors_f = as_float(monitors)

        self._optimizer.zero_grad()
        self.trigger_event('backward:before', self, loss)
        loss.backward()
        self.trigger_event('backward:after', self, loss)
        self._optimizer.step()

        end = time.time()

        self.trigger_event('step:after', self)

        return loss_f, monitors_f, output_dict, {'time/gpu': end - begin}
Esempio n. 2
0
 def test_deconv2d(self):
     in_tensor = as_variable(torch.randn(16, 8, 4, 2))
     self._test_conv_size(in_tensor,
                          jacnn.Deconv2dLayer(8, 16, 3, scale_factor=2),
                          (16, 16, 8, 4))
     self._test_conv_size(
         in_tensor,
         jacnn.Deconv2dLayer(8, 16, 3, scale_factor=2,
                             algo='convtranspose'), (16, 16, 8, 4))
Esempio n. 3
0
 def validate_step(self, feed_dict, metric, meters=None):
     feed_dict_np = as_numpy(feed_dict)
     feed_dict = mark_volatile(as_variable(feed_dict))
     output_dict = self._model(feed_dict)
     output_dict_np = as_numpy(output_dict)
     result = as_float(metric(feed_dict_np, output_dict_np))
     if meters is not None:
         meters.update(result)
     return result
    def __call__(self, ind):
        raw_img, img, img_embedding, cap, cap_ext = self.dataset[ind]
        img_embedding_precomp = self.model.img_enc(as_cuda(as_variable(img_embedding).unsqueeze(0)))

        img = as_variable(img)
        img.requires_grad = True
        img_embedding_a = img_embedding = self.image_encoder(as_cuda(img.unsqueeze(0)))
        img_embedding = self.model.img_enc(img_embedding)

        txt = [cap]
        txt.extend(cap_ext)
        txt_embeddings, txt_var = self.enc_txt(txt)

        return Record(
                raw_img, cap, cap_ext,
                img, img_embedding, img_embedding_precomp,
                txt_var, txt_embeddings[0], txt_embeddings[1:]
        )
Esempio n. 5
0
    def evaluate(self, feed_dict):
        assert not self._model.training, 'Evaluating a training-mode model.'
        begin = time.time()
        feed_dict = as_variable(feed_dict)
        feed_dict = mark_volatile(feed_dict)
        output_dict = self._model(feed_dict)
        end = time.time()

        return output_dict, dict(gpu_time=end - begin)
Esempio n. 6
0
 def test_deconv2d(self):
     in_tensor = as_variable(torch.randn(16, 8, 4, 2))
     self._test_conv_size(
         in_tensor, jacnn.ConvTranspose2d(8, 16, 3, padding_mode='same'),
         (16, 16, 4, 2))
     self._test_conv_size(in_tensor,
                          jacnn.ConvTranspose2d(8,
                                                16,
                                                3,
                                                2,
                                                padding_mode='same'),
                          (16, 16, 8, 4),
                          scale_factor=2)
Esempio n. 7
0
    def train_step(self, feed_dict, meters=None):
        assert self._model.training
        feed_dict = as_variable(feed_dict)

        self._optimizer.zero_grad()
        loss, monitors, output_dict = self._model(feed_dict)
        loss.backward()
        self._optimizer.step()

        loss, monitors = map(as_float, [loss, monitors])
        if meters is not None:
            meters.update(loss=loss)
            meters.update(monitors)

        return as_float(loss)
def _prepare_batch(sents, projector):
    if isinstance(sents, six.string_types):
        sents = [sents]

    sents = [np.array(projector(s)) for s in sents]
    lengths = [len(s) for s in sents]
    sents = _pad_sequences(sents, 0, max(lengths))

    idx = np.array(sorted(range(len(lengths)), key=lambda x: lengths[x], reverse=True))
    inv = np.array(sorted(range(len(lengths)), key=lambda x: idx[x]))
    sents = sents[idx]
    lengths = np.array(lengths)[idx].tolist()

    sents = as_variable(sents)
    if torch.cuda.is_available():
        sents = sents.cuda()
    return sents, lengths, idx, inv
Esempio n. 9
0
 def test_conv2d(self):
     in_tensor = as_variable(torch.randn(16, 8, 4, 2))
     self._test_conv_size(in_tensor, jacnn.Conv2d(8, 16, 3, padding=1),
                          (16, 16, 4, 2))
     self._test_conv_size(
         in_tensor, jacnn.Conv2d(8, 16, 2, stride=2, padding_mode='valid'),
         (16, 16, 2, 1))
     self._test_conv_size(in_tensor,
                          jacnn.Conv2d(8, 16, 3, padding_mode='same'),
                          (16, 16, 4, 2))
     self._test_conv_size(
         in_tensor,
         jacnn.Conv2d(8,
                      16, (5, 3),
                      padding_mode='same',
                      border_mode='replicate'), (16, 16, 4, 2))
     self._test_conv_size(
         in_tensor,
         jacnn.Conv2d(8,
                      16, (5, 3),
                      padding_mode='same',
                      border_mode='reflect'), (16, 16, 4, 2))
Esempio n. 10
0
 def _inference_model(self, feed_dict):
     feed_dict = as_variable(feed_dict)
     mark_volatile(feed_dict)
     return as_numpy(self._model(feed_dict))
Esempio n. 11
0
 def test_resize_conv2d(self):
     in_tensor = as_variable(torch.randn(16, 8, 4, 2))
     self._test_conv_size(in_tensor,
                          jacnn.ResizeConv2d(8, 16, 3, scale_factor=2),
                          (16, 16, 8, 4))
 def enc_txt(self, caps):
     sents, lengths, _, inv = _prepare_batch(caps, self.projector)
     inv = var_with(as_variable(inv), sents)
     out, x = self.model.txt_enc.forward(sents, lengths, True)
     return out[inv], x