class Calendar(object): """ A calendar for manage trade date. Attributes ---------- data_api : """ def __init__(self, data_api=None): if data_api is not None: self.data_api = data_api else: props = jutil.read_json( jutil.join_relative_path('etc/data_config.json')) address = props.get("remote.address", "") username = props.get("remote.username", "") password = props.get("remote.password", "") if address is None or username is None or password is None: raise ValueError("no address, username or password available!") time_out = props.get("timeout", 60) self.data_api = DataApi(address, use_jrpc=False) self.data_api.set_timeout(timeout=time_out) r, msg = self.data_api.login(username=username, password=password) if not r: print("DataAPI login failed: msg = '{}".format(msg)) else: print "DataAPI login success : {}@{}".format(username, address) @staticmethod def _dic2url(d): """ Convert a dict to str like 'k1=v1&k2=v2' Parameters ---------- d : dict Returns ------- str """ l = ['='.join([key, str(value)]) for key, value in d.viewitems()] return '&'.join(l) def get_trade_date_range(self, start_date, end_date): """ Get array of trade dates within given range. Return zero size array if no trade dates within range. Parameters ---------- start_date : int YYmmdd end_date : int Returns ------- trade_dates_arr : np.ndarray dtype = int """ filter_argument = self._dic2url({ 'start_date': start_date, 'end_date': end_date }) df_raw, msg = self.data_api.query("jz.secTradeCal", fields="trade_date", filter=filter_argument, orderby="") if df_raw.empty: return np.array([], dtype=int) trade_dates_arr = df_raw['trade_date'].values.astype(int) return trade_dates_arr def get_last_trade_date(self, date): """ Parameters ---------- date : int Returns ------- res : int """ dt = jutil.convert_int_to_datetime(date) delta = pd.Timedelta(weeks=2) dt_old = dt - delta date_old = jutil.convert_datetime_to_int(dt_old) dates = self.get_trade_date_range(date_old, date) mask = dates < date res = dates[mask][-1] return res def is_trade_date(self, date): """ Check whether date is a trade date. Parameters ---------- date : int Returns ------- bool """ dates = self.get_trade_date_range(date, date) return len(dates) > 0 def get_next_trade_date(self, date): """ Parameters ---------- date : int Returns ------- res : int """ dt = jutil.convert_int_to_datetime(date) delta = pd.Timedelta(weeks=2) dt_new = dt + delta date_new = jutil.convert_datetime_to_int(dt_new) dates = self.get_trade_date_range(date, date_new) mask = dates > date res = dates[mask][0] return res
class RemoteDataService(DataService): """ RemoteDataService is a concrete class using data from remote server's database. """ __metaclass__ = Singleton # TODO no validity check for input parameters def __init__(self): DataService.__init__(self) dic = fileio.read_json( fileio.join_relative_path('etc/data_config.json')) address = dic.get("remote.address", None) username = dic.get("remote.username", None) password = dic.get("remote.password", None) if address is None or username is None or password is None: raise ValueError("no address, username or password available!") self.api = DataApi(address, use_jrpc=False) self.api.set_timeout(60) r, msg = self.api.login(username=username, password=password) if not r: print msg else: print "DataAPI login success.".format(address) self.REPORT_DATE_FIELD_NAME = 'report_date' def daily(self, symbol, start_date, end_date, fields="", adjust_mode=None): df, err_msg = self.api.daily(symbol=symbol, start_date=start_date, end_date=end_date, fields=fields, adjust_mode=adjust_mode, data_format="") # trade_status performance warning # TODO there will be duplicate entries when on stocks' IPO day df = df.drop_duplicates() return df, err_msg def bar(self, symbol, start_time=200000, end_time=160000, trade_date=None, freq='1m', fields=""): df, msg = self.api.bar(symbol=symbol, fields=fields, start_time=start_time, end_time=end_time, trade_date=trade_date, freq='1m', data_format="") return df, msg def query(self, view, filter="", fields="", **kwargs): """ Get various reference data. Parameters ---------- view : str data source. fields : str Separated by ',' filter : str filter expressions. kwargs Returns ------- df : pd.DataFrame msg : str error code and error message, joined by ',' Examples -------- res3, msg3 = ds.query("lb.secDailyIndicator", fields="price_level,high_52w_adj,low_52w_adj", filter="start_date=20170907&end_date=20170907", orderby="trade_date", data_format='pandas') view does not change. fileds can be any field predefined in reference data api. """ df, msg = self.api.query(view, fields=fields, filter=filter, data_format="", **kwargs) return df, msg def get_suspensions(self): return None # TODO use Calendar instead def get_trade_date(self, start_date, end_date, symbol=None, is_datetime=False): if symbol is None: symbol = '000300.SH' df, msg = self.daily(symbol, start_date, end_date, fields="close") res = df.loc[:, 'trade_date'].values if is_datetime: res = dtutil.convert_int_to_datetime(res) return res @staticmethod def _dic2url(d): """ Convert a dict to str like 'k1=v1&k2=v2' Parameters ---------- d : dict Returns ------- str """ l = ['='.join([key, str(value)]) for key, value in d.items()] return '&'.join(l) def query_lb_fin_stat(self, type_, symbol, start_date, end_date, fields=""): """ Helper function to call data_api.query with 'lb.income' more conveniently. Parameters ---------- type_ : {'income', 'balance_sheet', 'cash_flow'} symbol : str separated by ',' start_date : int Annoucement date in results will be no earlier than start_date end_date : int Annoucement date in results will be no later than start_date fields : str, optional separated by ',', default "" Returns ------- df : pd.DataFrame index date, columns fields msg : str """ view_map = { 'income': 'lb.income', 'cash_flow': 'lb.cashFlow', 'balance_sheet': 'lb.balanceSheet', 'fin_indicator': 'lb.finIndicator' } view_name = view_map.get(type_, None) if view_name is None: raise NotImplementedError("type_ = {:s}".format(type_)) dic_argument = { 'symbol': symbol, 'start_date': start_date, 'end_date': end_date, 'update_flag': '0' } if view_name != 'lb.finIndicator': dic_argument.update({ 'report_type': '408001000' }) # we do not use single quarter single there are zeros """ 408001000: joint 408002000: joint (single quarter) """ filter_argument = self._dic2url( dic_argument) # 0 means first time, not update res, msg = self.query(view_name, fields=fields, filter=filter_argument, order_by=self.REPORT_DATE_FIELD_NAME) # change data type try: cols = list( set.intersection({'ann_date', 'report_date'}, set(res.columns))) dic_dtype = {col: int for col in cols} res = res.astype(dtype=dic_dtype) except: pass return res, msg def query_lb_dailyindicator(self, symbol, start_date, end_date, fields=""): """ Helper function to call data_api.query with 'lb.secDailyIndicator' more conveniently. Parameters ---------- symbol : str separated by ',' start_date : int end_date : int fields : str, optional separated by ',', default "" Returns ------- df : pd.DataFrame index date, columns fields msg : str """ filter_argument = self._dic2url({ 'symbol': symbol, 'start_date': start_date, 'end_date': end_date }) return self.query("lb.secDailyIndicator", fields=fields, filter=filter_argument, orderby="trade_date") def _get_index_comp(self, index, start_date, end_date): """ Return all securities that have been in index during start_date and end_date. Parameters ---------- index : str separated by ',' start_date : int end_date : int Returns ------- list """ filter_argument = self._dic2url({ 'index_code': index, 'start_date': start_date, 'end_date': end_date }) df_io, msg = self.query("lb.indexCons", fields="", filter=filter_argument, orderby="symbol") return df_io, msg def get_index_comp(self, index, start_date, end_date): """ Return list of symbols that have been in index during start_date and end_date. Parameters ---------- index : str separated by ',' start_date : int end_date : int Returns ------- list """ df_io, msg = self._get_index_comp(index, start_date, end_date) if msg != '0,': print msg return list(np.unique(df_io.loc[:, 'symbol'])) def get_index_comp_df(self, index, start_date, end_date): """ Get index components on each day during start_date and end_date. Parameters ---------- index : str separated by ',' start_date : int end_date : int Returns ------- res : pd.DataFrame index dates, columns all securities that have ever been components, values are 0 (not in) or 1 (in) """ df_io, msg = self._get_index_comp(index, start_date, end_date) if msg != '0,': print msg def str2int(s): if isinstance(s, (str, unicode)): return int(s) if s else 99999999 elif isinstance(s, (int, np.integer, float, np.float)): return s else: raise NotImplementedError("type s = {}".format(type(s))) df_io.loc[:, 'in_date'] = df_io.loc[:, 'in_date'].apply(str2int) df_io.loc[:, 'out_date'] = df_io.loc[:, 'out_date'].apply(str2int) # df_io.set_index('symbol', inplace=True) dates = self.get_trade_date(start_date=start_date, end_date=end_date, symbol=index) dic = dict() gp = df_io.groupby(by='symbol') for sec, df in gp: mask = np.zeros_like(dates, dtype=int) for idx, row in df.iterrows(): bool_index = np.logical_and(dates > row['in_date'], dates < row['out_date']) mask[bool_index] = 1 dic[sec] = mask res = pd.DataFrame(index=dates, data=dic) return res @staticmethod def _group_df_to_dict(df, by): gp = df.groupby(by=by) res = {key: value for key, value in gp} return res def get_industry_daily(self, symbol, start_date, end_date, type_='SW'): """ Get index components on each day during start_date and end_date. Parameters ---------- symbol : str separated by ',' start_date : int end_date : int type_ : {'SW', 'ZZ'} Returns ------- res : pd.DataFrame index dates, columns symbols values are industry code """ df_raw = self.get_industry_raw(symbol, type_=type_) dic_sec = self._group_df_to_dict(df_raw, by='symbol') dic_sec = { sec: df.sort_values(by='in_date', axis=0).reset_index() for sec, df in dic_sec.viewitems() } df_ann = pd.concat([ df.loc[:, 'in_date'].rename(sec) for sec, df in dic_sec.viewitems() ], axis=1) df_value = pd.concat([ df.loc[:, 'industry1_code'].rename(sec) for sec, df in dic_sec.viewitems() ], axis=1) dates_arr = self.get_trade_date(start_date, end_date) df_industry = align.align(df_value, df_ann, dates_arr) # TODO before industry classification is available, we assume they belong to their first group. df_industry = df_industry.fillna(method='bfill') df_industry = df_industry.astype(str) return df_industry def get_industry_raw(self, symbol, type_='ZZ'): """ Get daily industry of securities from ShenWanHongYuan or ZhongZhengZhiShu. Parameters ---------- symbol : str separated by ',' type_ : {'SW', 'ZZ'} Returns ------- df : pd.DataFrame """ if type_ == 'SW': src = u'申万研究所'.encode('utf-8') elif type_ == 'ZZ': src = u'中证指数有限公司'.encode('utf-8') else: raise ValueError("type_ must be one of SW of ZZ") filter_argument = self._dic2url({ 'symbol': symbol, 'industry_src': src }) fields_list = ['symbol', 'industry1_code', 'industry1_name'] df_raw, msg = self.query("lb.secIndustry", fields=','.join(fields_list), filter=filter_argument, orderby="symbol") if msg != '0,': print msg df_raw = df_raw.astype(dtype={ 'in_date': int, # 'out_date': int }) return df_raw.drop_duplicates() def get_adj_factor_daily(self, symbol, start_date, end_date, div=False): """ Get index components on each day during start_date and end_date. Parameters ---------- symbol : str separated by ',' start_date : int end_date : int div : bool False for normal adjust factor, True for diff. Returns ------- res : pd.DataFrame index dates, columns symbols values are industry code """ df_raw = self.get_adj_factor_raw(symbol) dic_sec = self._group_df_to_dict(df_raw, by='symbol') dic_sec = { sec: df.loc[:, ['trade_date', 'adjust_factor']].set_index( 'trade_date').iloc[:, 0] for sec, df in dic_sec.viewitems() } res = pd.concat(dic_sec, axis=1) # align to every trade date s, e = df_raw.loc[:, 'trade_date'].min(), df_raw.loc[:, 'trade_date'].max() dates_arr = self.get_trade_date(s, e) res = res.reindex(dates_arr) res = res.fillna(method='ffill').fillna(method='bfill') if div: res = res.div(res.shift(1, axis=0)).fillna(1.0) res = res.loc[start_date:end_date, :] return res def get_adj_factor_raw(self, symbol, start_date=None, end_date=None): """ Query adjust factor for symbols. Parameters ---------- symbol : str separated by ',' start_date : int end_date : int Returns ------- df : pd.DataFrame """ if start_date is None: start_date = "" if end_date is None: end_date = "" filter_argument = self._dic2url({ 'symbol': symbol, 'start_date': start_date, 'end_date': end_date }) fields_list = ['symbol', 'trade_date', 'adjust_factor'] df_raw, msg = self.query("lb.secAdjFactor", fields=','.join(fields_list), filter=filter_argument, orderby="symbol") if msg != '0,': print msg df_raw = df_raw.astype(dtype={ 'symbol': str, 'trade_date': int, 'adjust_factor': float }) return df_raw.drop_duplicates() def query_inst_info(self, symbol, inst_type="", fields=""): if inst_type == "": inst_type = "1,2,3,4,5,101,102,103,104" filter_argument = self._dic2url({ 'symbol': symbol, 'inst_type': inst_type }) df_raw, msg = self.query("jz.instrumentInfo", fields=fields, filter=filter_argument, orderby="symbol") if msg != '0,': print msg dtype_map = {'symbol': str, 'list_date': int, 'delist_date': int} cols = set(df_raw.columns) dtype_map = {k: v for k, v in dtype_map.items() if k in cols} df_raw = df_raw.astype(dtype=dtype_map) return df_raw, msg
class RemoteDataService(DataService): """ RemoteDataService is a concrete class using data from remote server's database. """ __metaclass__ = Singleton # TODO no validity check for input parameters def __init__(self): DataService.__init__(self) self.data_api = None self.REPORT_DATE_FIELD_NAME = 'report_date' self.calendar = None def __del__(self): self.data_api.close() def init_from_config(self, props=None): if props is None: props = dict() if self.data_api is not None: if len(props) == 0: return else: self.data_api.close() def get_from_list_of_dict(l, key, default=None): res = None for dic in l: res = dic.get(key, None) if res is not None: break if res is None: res = default return res props_default = jutil.read_json( jutil.join_relative_path('etc/data_config.json')) dic_list = [props, props_default] address = get_from_list_of_dict(dic_list, "remote.address", "") username = get_from_list_of_dict(dic_list, "remote.username", "") password = get_from_list_of_dict(dic_list, "remote.password", "") if address is None or username is None or password is None: raise ValueError("no address, username or password available!") time_out = get_from_list_of_dict(dic_list, "timeout", 60) self.data_api = DataApi(address, use_jrpc=False) self.data_api.set_timeout(timeout=time_out) print("\nDataApi login: {}@{}".format(username, address)) r, msg = self.data_api.login(username=username, password=password) if not r: print(" login failed: msg = '{}'\n".format(msg)) else: print " login success \n" self.calendar = Calendar(self.data_api) # ----------------------------------------------------------------------------------- # Basic APIs def daily(self, symbol, start_date, end_date, fields="", adjust_mode=None): df, err_msg = self.data_api.daily(symbol=symbol, start_date=start_date, end_date=end_date, fields=fields, adjust_mode=adjust_mode, data_format="") # trade_status performance warning # TODO there will be duplicate entries when on stocks' IPO day df = df.drop_duplicates() return df, err_msg def bar(self, symbol, start_time=200000, end_time=160000, trade_date=None, freq='1M', fields=""): df, msg = self.data_api.bar(symbol=symbol, fields=fields, start_time=start_time, end_time=end_time, trade_date=trade_date, freq='1M', data_format="") return df, msg def query(self, view, filter="", fields="", **kwargs): """ Get various reference data. Parameters ---------- view : str data source. fields : str Separated by ',' filter : str filter expressions. kwargs Returns ------- df : pd.DataFrame msg : str error code and error message, joined by ',' Examples -------- res3, msg3 = ds.query("lb.secDailyIndicator", fields="price_level,high_52w_adj,low_52w_adj",\ filter="start_date=20170907&end_date=20170907",\ orderby="trade_date",\ data_format='pandas') view does not change. fileds can be any field predefined in reference data api. """ df, msg = self.data_api.query(view, fields=fields, filter=filter, data_format="", **kwargs) return df, msg # ----------------------------------------------------------------------------------- # Convenient Functions def get_trade_date_range(self, start_date, end_date): return self.calendar.get_trade_date_range(start_date, end_date) @staticmethod def _dic2url(d): """ Convert a dict to str like 'k1=v1&k2=v2' Parameters ---------- d : dict Returns ------- str """ l = ['='.join([key, str(value)]) for key, value in d.viewitems()] return '&'.join(l) def query_lb_fin_stat(self, type_, symbol, start_date, end_date, fields="", drop_dup_cols=None): """ Helper function to call data_api.query with 'lb.income' more conveniently. Parameters ---------- type_ : {'income', 'balance_sheet', 'cash_flow'} symbol : str separated by ',' start_date : int Annoucement date in results will be no earlier than start_date end_date : int Annoucement date in results will be no later than start_date fields : str, optional separated by ',', default "" drop_dup_cols : list or tuple Whether drop duplicate entries according to drop_dup_cols. Returns ------- df : pd.DataFrame index date, columns fields msg : str """ view_map = { 'income': 'lb.income', 'cash_flow': 'lb.cashFlow', 'balance_sheet': 'lb.balanceSheet', 'fin_indicator': 'lb.finIndicator' } view_name = view_map.get(type_, None) if view_name is None: raise NotImplementedError("type_ = {:s}".format(type_)) dic_argument = { 'symbol': symbol, 'start_date': start_date, 'end_date': end_date, # 'update_flag': '0' } if view_name != 'lb.finIndicator': dic_argument.update({ 'report_type': '408001000' }) # we do not use single quarter single there are zeros """ 408001000: joint 408002000: joint (single quarter) """ filter_argument = self._dic2url( dic_argument) # 0 means first time, not update res, msg = self.query(view_name, fields=fields, filter=filter_argument, order_by=self.REPORT_DATE_FIELD_NAME) # change data type try: cols = list( set.intersection({'ann_date', 'report_date'}, set(res.columns))) dic_dtype = {col: int for col in cols} res = res.astype(dtype=dic_dtype) except: pass if drop_dup_cols is not None: res = res.sort_values(by=drop_dup_cols, axis=0) res = res.drop_duplicates(subset=drop_dup_cols, keep='first') return res, msg def query_lb_dailyindicator(self, symbol, start_date, end_date, fields=""): """ Helper function to call data_api.query with 'lb.secDailyIndicator' more conveniently. Parameters ---------- symbol : str separated by ',' start_date : int end_date : int fields : str, optional separated by ',', default "" Returns ------- df : pd.DataFrame index date, columns fields msg : str """ filter_argument = self._dic2url({ 'symbol': symbol, 'start_date': start_date, 'end_date': end_date }) return self.query("lb.secDailyIndicator", fields=fields, filter=filter_argument, orderby="trade_date") def get_index_weights(self, index, trade_date): """ Return all securities that have been in index during start_date and end_date. Parameters ---------- index : str separated by ',' trade_date : int Returns ------- pd.DataFrame """ if index == '000300.SH': index = '399300.SZ' filter_argument = self._dic2url({ 'index_code': index, 'trade_date': trade_date }) df_io, msg = self.query("lb.indexWeight", fields="", filter=filter_argument) if msg != '0,': print msg df_io = df_io.set_index('symbol') df_io = df_io.astype({'weight': float, 'trade_date': int}) df_io.loc[:, 'weight'] = df_io['weight'] / 100. return df_io def get_index_weights_daily(self, index, start_date, end_date): """ Return all securities that have been in index during start_date and end_date. Parameters ---------- index : str start_date : int end_date : int Returns ------- res : pd.DataFrame Index is trade_date, columns are symbols. """ # TODO: temparary api trade_dates = self.get_trade_date_range(start_date, end_date) start_date, end_date = trade_dates[0], trade_dates[-1] td = start_date dic = dict() symbols_set = set() while True: if td > end_date: break df = self.get_index_weights(index, td) update_date = df['trade_date'].iat[0] if update_date >= start_date and update_date <= end_date: symbols_set.update(set(df.index)) dic[td] = df['weight'] td = jutil.get_next_period_day(td, 'month', 1) merge = pd.concat(dic, axis=1).T merge = merge.fillna(0.0) # for those which are not components res = pd.DataFrame(index=trade_dates, columns=sorted(list(symbols_set)), data=np.nan) res.update(merge) res = res.fillna(method='ffill') res = res.loc[start_date:end_date] return res def _get_index_comp(self, index, start_date, end_date): """ Return all securities that have been in index during start_date and end_date. Parameters ---------- index : str separated by ',' start_date : int end_date : int Returns ------- list """ filter_argument = self._dic2url({ 'index_code': index, 'start_date': start_date, 'end_date': end_date }) df_io, msg = self.query("lb.indexCons", fields="", filter=filter_argument, orderby="symbol") return df_io, msg def get_index_comp(self, index, start_date, end_date): """ Return list of symbols that have been in index during start_date and end_date. Parameters ---------- index : str separated by ',' start_date : int end_date : int Returns ------- list """ df_io, msg = self._get_index_comp(index, start_date, end_date) if msg != '0,': print msg return list(np.unique(df_io.loc[:, 'symbol'])) def get_index_comp_df(self, index, start_date, end_date): """ Get index components on each day during start_date and end_date. Parameters ---------- index : str separated by ',' start_date : int end_date : int Returns ------- res : pd.DataFrame index dates, columns all securities that have ever been components, values are 0 (not in) or 1 (in) """ df_io, msg = self._get_index_comp(index, start_date, end_date) if msg != '0,': print msg def str2int(s): if isinstance(s, (str, unicode)): return int(s) if s else 99999999 elif isinstance(s, (int, np.integer, float, np.float)): return s else: raise NotImplementedError("type s = {}".format(type(s))) df_io.loc[:, 'in_date'] = df_io.loc[:, 'in_date'].apply(str2int) df_io.loc[:, 'out_date'] = df_io.loc[:, 'out_date'].apply(str2int) # df_io.set_index('symbol', inplace=True) dates = self.get_trade_date_range(start_date=start_date, end_date=end_date) dic = dict() gp = df_io.groupby(by='symbol') for sec, df in gp: mask = np.zeros_like(dates, dtype=int) for idx, row in df.iterrows(): bool_index = np.logical_and(dates > row['in_date'], dates < row['out_date']) mask[bool_index] = 1 dic[sec] = mask res = pd.DataFrame(index=dates, data=dic) return res def get_industry_daily(self, symbol, start_date, end_date, type_='SW', level=1): """ Get index components on each day during start_date and end_date. Parameters ---------- symbol : str separated by ',' start_date : int end_date : int type_ : {'SW', 'ZZ'} Returns ------- res : pd.DataFrame index dates, columns symbols values are industry code """ df_raw = self.get_industry_raw(symbol, type_=type_, level=level) dic_sec = jutil.group_df_to_dict(df_raw, by='symbol') dic_sec = { sec: df.sort_values(by='in_date', axis=0).reset_index() for sec, df in dic_sec.viewitems() } df_ann_tmp = pd.concat( {sec: df.loc[:, 'in_date'] for sec, df in dic_sec.viewitems()}, axis=1) df_value_tmp = pd.concat( { sec: df.loc[:, 'industry{:d}_code'.format(level)] for sec, df in dic_sec.viewitems() }, axis=1) idx = np.unique( np.concatenate([df.index.values for df in dic_sec.values()])) symbol_arr = np.sort(symbol.split(',')) df_ann = pd.DataFrame(index=idx, columns=symbol_arr, data=np.nan) df_ann.loc[df_ann_tmp.index, df_ann_tmp.columns] = df_ann_tmp df_value = pd.DataFrame(index=idx, columns=symbol_arr, data=np.nan) df_value.loc[df_value_tmp.index, df_value_tmp.columns] = df_value_tmp dates_arr = self.get_trade_date_range(start_date, end_date) df_industry = align.align(df_value, df_ann, dates_arr) # TODO before industry classification is available, we assume they belong to their first group. df_industry = df_industry.fillna(method='bfill') df_industry = df_industry.astype(str) return df_industry def get_industry_raw(self, symbol, type_='ZZ', level=1): """ Get daily industry of securities from ShenWanZhiShu or ZhongZhengZhiShu. Parameters ---------- symbol : str separated by ',' type_ : {'SW', 'ZZ'} level : {1, 2, 3, 4} Use which level of industry index classification. Returns ------- df : pd.DataFrame """ if type_ == 'SW': src = u'申万研究所'.encode('utf-8') if level not in [1, 2, 3, 4]: raise ValueError("For [SW], level must be one of {1, 2, 3, 4}") elif type_ == 'ZZ': src = u'中证指数有限公司'.encode('utf-8') if level not in [1, 2, 3, 4]: raise ValueError("For [ZZ], level must be one of {1, 2}") else: raise ValueError("type_ must be one of SW of ZZ") filter_argument = self._dic2url({ 'symbol': symbol, 'industry_src': src }) fields_list = [ 'symbol', 'industry{:d}_code'.format(level), 'industry{:d}_name'.format(level) ] df_raw, msg = self.query("lb.secIndustry", fields=','.join(fields_list), filter=filter_argument, orderby="symbol") if msg != '0,': print msg df_raw = df_raw.astype(dtype={ 'in_date': int, # 'out_date': int }) return df_raw.drop_duplicates() def get_adj_factor_daily(self, symbol, start_date, end_date, div=False): """ Get index components on each day during start_date and end_date. Parameters ---------- symbol : str separated by ',' start_date : int end_date : int div : bool False for normal adjust factor, True for diff. Returns ------- res : pd.DataFrame index dates, columns symbols values are industry code """ df_raw = self.get_adj_factor_raw(symbol, start_date=start_date, end_date=end_date) dic_sec = jutil.group_df_to_dict(df_raw, by='symbol') dic_sec = { sec: df.set_index('trade_date').loc[:, 'adjust_factor'] for sec, df in dic_sec.viewitems() } # TODO: duplicate codes with dataview.py: line 512 res = pd.concat(dic_sec, axis=1) # TODO: fillna ? idx = np.unique( np.concatenate([df.index.values for df in dic_sec.values()])) symbol_arr = np.sort(symbol.split(',')) res_final = pd.DataFrame(index=idx, columns=symbol_arr, data=np.nan) res_final.loc[res.index, res.columns] = res # align to every trade date s, e = df_raw.loc[:, 'trade_date'].min(), df_raw.loc[:, 'trade_date'].max() dates_arr = self.get_trade_date_range(s, e) if not len(dates_arr) == len(res_final.index): res_final = res_final.reindex(dates_arr) res_final = res_final.fillna(method='ffill').fillna(method='bfill') if div: res_final = res_final.div(res_final.shift(1, axis=0)).fillna(1.0) # res = res.loc[start_date: end_date, :] return res_final def get_adj_factor_raw(self, symbol, start_date=None, end_date=None): """ Query adjust factor for symbols. Parameters ---------- symbol : str separated by ',' start_date : int end_date : int Returns ------- df : pd.DataFrame """ if start_date is None: start_date = "" if end_date is None: end_date = "" filter_argument = self._dic2url({ 'symbol': symbol, 'start_date': start_date, 'end_date': end_date }) fields_list = ['symbol', 'trade_date', 'adjust_factor'] df_raw, msg = self.query("lb.secAdjFactor", fields=','.join(fields_list), filter=filter_argument, orderby="symbol") if msg != '0,': print msg df_raw = df_raw.astype(dtype={ 'symbol': str, 'trade_date': int, 'adjust_factor': float }) return df_raw.drop_duplicates() def query_inst_info(self, symbol, inst_type="", fields=""): if inst_type == "": inst_type = "1,2,3,4,5,101,102,103,104" filter_argument = self._dic2url({ 'symbol': symbol, 'inst_type': inst_type }) df_raw, msg = self.query("jz.instrumentInfo", fields=fields, filter=filter_argument, orderby="symbol") if msg != '0,': print msg dtype_map = { 'symbol': str, 'list_date': int, 'delist_date': int, 'inst_type': int } cols = set(df_raw.columns) dtype_map = {k: v for k, v in dtype_map.viewitems() if k in cols} df_raw = df_raw.astype(dtype=dtype_map) res = df_raw.set_index('symbol') return res # ----------------------------------------------------------------------------------- # subscribe for real time trading def subscribe(self, symbols): """ Parameters ---------- symbols : str Separated by , """ self.data_api.subscribe(symbols, func=self.mkt_data_callback) def mkt_data_callback(self, key, quote): e = Event(EVENT_TYPE.MARKET_DATA) # print quote e.dic = {'quote': quote} self.ctx.instance.put(e)