Esempio n. 1
0
def calculate_site_response(site, siteName, sessionInd, maxZonly=False):

    from jaratoolbox import spikesanalysis

    #Zscore settings from billy

    baseRange = [-0.050, -0.025]  # Baseline range (in seconds)
    binTime = baseRange[1] - baseRange[0]  # Time-bin size
    responseTimeRange = [
        -0.5, 1
    ]  #Time range to calculate z value for (should be divisible by binTime
    responseTime = responseTimeRange[1] - responseTimeRange[0]
    numBins = responseTime / binTime
    binEdges = np.arange(responseTimeRange[0], responseTimeRange[1], binTime)
    timeRange = [-0.5, 1]

    loader = dataloader.DataLoader('offline', experimenter=site.experimenter)

    sessionEphys = site.get_mouse_relative_ephys_filenames()[sessionInd]

    siteClusterMaxZ = {}
    siteClusterPval = {}
    siteClusterZstat = {}

    for tetrode in site.tetrodes:
        oneTT = cluster_site(site, siteName, tetrode, report=False)
        possibleClusters = np.unique(oneTT.clusters)

        for indClust, cluster in enumerate(possibleClusters):

            rasterSpikes = loader.get_session_spikes(sessionEphys, tetrode)
            spikeTimes = rasterSpikes.timestamps[rasterSpikes.clusters ==
                                                 cluster]
            rasterEvents = loader.get_session_events(sessionEphys)
            eventOnsetTimes = loader.get_event_onset_times(rasterEvents)


            (spikeTimesFromEventOnset,trialIndexForEachSpike,indexLimitsEachTrial) = \
            spikesanalysis.eventlocked_spiketimes(spikeTimes,eventOnsetTimes,timeRange)

            [zStat, pValue, maxZ] = spikesanalysis.response_score(
                spikeTimesFromEventOnset, indexLimitsEachTrial, baseRange,
                binEdges
            )  #computes z score for each bin. zStat is array of z scores. maxZ is maximum value of z in timeRange

            tetClustName = '{0}T{1}c{2}'.format(siteName, tetrode, cluster)
            siteClusterMaxZ[tetClustName] = maxZ
            siteClusterPval[tetClustName] = pValue
            siteClusterZstat[tetClustName] = zStat

    if maxZonly:
        return siteClusterMaxZ
    else:
        return siteClusterZstat, siteClusterPval, siteClusterMaxZ
Esempio n. 2
0
def am_mod_report(site, siteName, amSessionInd):
    '''

    '''
    loader = dataloader.DataLoader('offline', experimenter=site.experimenter)

    for tetrode in site.tetrodes:
        try:
            oneTT = cluster_site(site, siteName, tetrode)
        except AttributeError:
            print "There was an attribute error for tetrode {} at {}".format(
                tetrode, siteName)
            continue
        possibleClusters = np.unique(oneTT.clusters)

        for indClust, cluster in enumerate(possibleClusters):

            amFilename = site.get_mouse_relative_ephys_filenames(
            )[amSessionInd]
            amBehav = site.get_mouse_relative_behav_filenames()[amSessionInd]

            plt.clf()

            spikeData = loader.get_session_spikes(amFilename,
                                                  tetrode,
                                                  cluster=cluster)
            spikeTimes = spikeData.timestamps

            eventData = loader.get_session_events(amFilename)
            eventOnsetTimes = loader.get_event_onset_times(eventData)

            bdata = loader.get_session_behavior(amBehav)

            currentFreq = bdata['currentFreq']

            dataplotter.plot_raster(spikeTimes,
                                    eventOnsetTimes,
                                    sortArray=currentFreq)
            fig_path = oneTT.clustersDir
            fig_name = 'TT{0}Cluster{1}_Amp_Mod.png'.format(tetrode, cluster)
            full_fig_path = os.path.join(fig_path, fig_name)
            print full_fig_path
            plt.savefig(full_fig_path, format='png')
Esempio n. 3
0
def plot_cluster_tuning(clusterObj,
                        indTC,
                        experimenter='nick',
                        *args,
                        **kwargs):
    loader = dataloader.DataLoader('offline', experimenter=experimenter)
    spikeData, eventData, behavData = loader.get_cluster_data(
        clusterObj, indTC)

    spikeTimestamps = spikeData.timestamps
    eventOnsetTimes = loader.get_event_onset_times(eventData)
    freqEachTrial = behavData['currentFreq']
    intensityEachTrial = behavData['currentIntensity']

    possibleFreq = np.unique(freqEachTrial)
    possibleIntensity = np.unique(intensityEachTrial)

    xlabel = 'Frequency (kHz)'
    ylabel = 'Intensity (dB SPL)'

    freqLabels = ["%.1f" % freq for freq in possibleFreq / 1000.0]
    intenLabels = ["%.1f" % inten for inten in possibleIntensity]

    # plt.clf()
    ax, cax, cbar = dataplotter.two_axis_heatmap(
        spikeTimestamps,
        eventOnsetTimes,
        firstSortArray=intensityEachTrial,
        secondSortArray=freqEachTrial,
        firstSortLabels=intenLabels,
        secondSortLabels=freqLabels,
        timeRange=[0, 0.1],
        *args,
        **kwargs)
    plt.xlabel(xlabel)
    plt.ylabel(ylabel)

    return ax, cax, cbar
Esempio n. 4
0
from jaratest.nick.database import dataplotter
from jaratest.nick.database import cellDB
from jaratest.nick.database import clusterfuncs
from jaratoolbox import spikesorting
from matplotlib import pyplot as plt
from jaratoolbox import behavioranalysis
from jaratoolbox import spikesanalysis

reload(cellDB)
reload(clusterfuncs)

figdb = cellDB.CellDB()
figdbFn = '/home/nick/data/database/pinp003_thalamus_cells.json'
figdb.load_from_json(figdbFn)

loader = dataloader.DataLoader('offline', experimenter='nick')

figdb[0].get_session_types()

clusterfuncs.plot_cluster_tuning(figdb[1], 3)

spikeData, eventData, behavData = loader.get_cluster_data(figdb[1], 3)

currentFreq = behavData['currentFreq']
possibleFreq = np.unique(currentFreq)
currentIntensity = behavData['currentIntensity']
possibleIntensity = np.unique(currentIntensity)

spikeTimestamps = spikeData.timestamps
eventOnsetTimes = loader.get_event_onset_times(eventData)
timeRange = [-0.5, 1]
# plt.show()

# plt.figure()
# dataplotter.plot_waveforms_in_event_locked_timerange(waveforms, spikeTimes, eventOnsetTimes, [0.1, 0.2])
# plt.show()

def compare_session_spike_waveforms(spikeSamples, spikeTimes, eventOnsetTimes, rasterTimeRange, timeRangeList):
    
    fig=plt.figure()
    plt.subplot2grid((3, 2), (0, 0), rowspan=2, colspan=2) 
    dataplotter.plot_raster(spikeTimes, eventOnsetTimes, timeRange=rasterTimeRange)

    for ind, tr in enumerate( timeRangeList ):
        
        plt.subplot2grid((3, 2), (2, ind), rowspan=1, colspan=1)
        dataplotter.plot_waveforms_in_event_locked_timerange(spikeSamples, spikeTimes, eventOnsetTimes, tr)

    plt.subplots_adjust(hspace = 0.7)

if __name__=="__main__":
    loader=dataloader.DataLoader('online', 'pinp005', '2015-07-30', 'laser_tuning_curve')
    spikeData = loader.get_session_spikes('22-10-33', 4, cluster=8)
    events = loader.get_session_events('22-10-33')
    eventOnsetTimes=loader.get_event_onset_times(events)

    spikeTimes=spikeData.timestamps
    waveforms=spikeData.samples
    compare_session_spike_waveforms(waveforms, spikeTimes, eventOnsetTimes, [-0.5, 1], [[-0.2, 0], [0, 0.1]])

#TODO: It would be awesome if we could show the spikes on the raster in a color that corresponds to the waveforms
Esempio n. 6
0
##Getting the data from a cluster to make a plot
# -----------------------

#Sessions with no behav data return just the ephys
cell1NoisePhys = cell1.get_data_filenames('noiseBurst')

#Sessions with behav data return the tuple (ephysFilename, behavFilename)
cell1TuningPhys, cell1TuningBehavior = cell1.get_data_filenames('tcHeatmap')

# -----------------------
##Initialize an offline data loader
# -----------------------

#For now we still need to specify the experimenter for offline data analysis
#since the behavior data is broken up by experimenter
loader = dataloader.DataLoader('offline', experimenter='nick')

# -----------------------
##Get ephys and behavior data by passing the filenames from the cluster
# -----------------------

cell1NoiseSpikesTT6 = loader.get_session_spikes(cell1NoisePhys,
                                                6,
                                                cluster=cell1.cluster)
cell1NoiseEvents = loader.get_session_events(cell1NoisePhys)
cell1TuningBdata = loader.get_session_behavior(cell1TuningBehavior)
eventOnsetTimes = loader.get_event_onset_times(cell1NoiseEvents)
spikeTimes = cell1NoiseSpikesTT6.timestamps

# -----------------------
##Make a raster plot
Esempio n. 7
0
def nick_lan_daily_report(site,
                          siteName,
                          mainRasterInds,
                          mainTCind,
                          pcasort=True):
    '''

    '''

    loader = dataloader.DataLoader('offline', experimenter=site.experimenter)

    for tetrode in site.tetrodes:

        #Tetrodes with no spikes will cause an error when clustering
        try:
            if pcasort:
                oneTT = cluster_site_PCA(site, siteName, tetrode)
            else:
                oneTT = cluster_site(site, siteName, tetrode)
        except AttributeError:
            print "There was an attribute error for tetrode {} at {}".format(
                tetrode, siteName)
            continue

        possibleClusters = np.unique(oneTT.clusters)

        #Iterate through the clusters, making a new figure for each cluster.
        #for indClust, cluster in enumerate([3]):
        for indClust, cluster in enumerate(possibleClusters):

            mainRasterEphysFilenames = [
                site.get_mouse_relative_ephys_filenames()[i]
                for i in mainRasterInds
            ]
            mainRasterTypes = [
                site.get_session_types()[i] for i in mainRasterInds
            ]
            if mainTCind:
                mainTCsession = site.get_mouse_relative_ephys_filenames(
                )[mainTCind]
                mainTCbehavFilename = site.get_mouse_relative_behav_filenames(
                )[mainTCind]
                mainTCtype = site.get_session_types()[mainTCind]
            else:
                mainTCsession = None

            # plt.figure() #The main report for this cluster/tetrode/session
            plt.clf()

            for indRaster, rasterSession in enumerate(
                    mainRasterEphysFilenames):
                plt.subplot2grid((6, 6), (indRaster, 0), rowspan=1, colspan=3)

                rasterSpikes = loader.get_session_spikes(
                    rasterSession, tetrode)
                spikeTimestamps = rasterSpikes.timestamps[rasterSpikes.clusters
                                                          == cluster]

                rasterEvents = loader.get_session_events(rasterSession)
                eventOnsetTimes = loader.get_event_onset_times(rasterEvents)

                dataplotter.plot_raster(spikeTimestamps, eventOnsetTimes, ms=1)

                plt.ylabel('{}\n{}'.format(mainRasterTypes[indRaster],
                                           rasterSession.split('_')[1]),
                           fontsize=10)
                ax = plt.gca()
                extraplots.set_ticks_fontsize(
                    ax, 6)  #Should this go in dataplotter?

            #We can only do one main TC for now.
            if mainTCsession:

                plt.subplot2grid((6, 6), (0, 3), rowspan=3, colspan=3)

                bdata = loader.get_session_behavior(mainTCbehavFilename)
                plotTitle = loader.get_session_filename(mainTCsession)
                eventData = loader.get_session_events(mainTCsession)
                spikeData = loader.get_session_spikes(mainTCsession, tetrode)

                spikeTimestamps = spikeData.timestamps[spikeData.clusters ==
                                                       cluster]

                eventOnsetTimes = loader.get_event_onset_times(eventData)

                freqEachTrial = bdata['currentFreq']
                intensityEachTrial = bdata['currentIntensity']

                possibleFreq = np.unique(freqEachTrial)
                possibleIntensity = np.unique(intensityEachTrial)

                xlabel = 'Frequency (kHz)'
                ylabel = 'Intensity (dB SPL)'

                # firstSortLabels = ["%.1f" % freq for freq in possibleFreq/1000.0]
                # secondSortLabels = ['{}'.format(inten) for inten in possibleIntensity]

                # dataplotter.two_axis_heatmap(spikeTimestamps,
                #                             eventOnsetTimes,
                #                             freqEachTrial,
                #                             intensityEachTrial,
                #                             firstSortLabels,
                #                             secondSortLabels,
                #                             xlabel,
                #                             ylabel,
                #                             plotTitle=plotTitle,
                #                             flipFirstAxis=False,
                #                             flipSecondAxis=True,
                #                             timeRange=[0, 0.1])

                freqLabels = ["%.1f" % freq for freq in possibleFreq / 1000.0]
                intenLabels = ["%.1f" % inten for inten in possibleIntensity]

                dataplotter.two_axis_heatmap(spikeTimestamps=spikeTimestamps,
                                             eventOnsetTimes=eventOnsetTimes,
                                             firstSortArray=intensityEachTrial,
                                             secondSortArray=freqEachTrial,
                                             firstSortLabels=intenLabels,
                                             secondSortLabels=freqLabels,
                                             xlabel=xlabel,
                                             ylabel=ylabel,
                                             plotTitle=plotTitle,
                                             flipFirstAxis=True,
                                             flipSecondAxis=False,
                                             timeRange=[0, 0.1])

                plt.title("{0}\n{1}".format(mainTCsession,
                                            mainTCbehavFilename),
                          fontsize=10)
                plt.show()

            nSpikes = len(oneTT.timestamps)
            nClusters = len(possibleClusters)

            tsThisCluster = oneTT.timestamps[oneTT.clusters == cluster]
            wavesThisCluster = oneTT.samples[oneTT.clusters == cluster]

            # -- Plot ISI histogram --
            plt.subplot2grid((6, 6), (4, 0), rowspan=1, colspan=3)
            spikesorting.plot_isi_loghist(tsThisCluster)
            plt.ylabel('c%d' % cluster, rotation=0, va='center', ha='center')
            plt.xlabel('')

            # -- Plot waveforms --
            plt.subplot2grid((6, 6), (5, 0), rowspan=1, colspan=3)
            spikesorting.plot_waveforms(wavesThisCluster)

            # -- Plot projections --
            plt.subplot2grid((6, 6), (4, 3), rowspan=1, colspan=3)
            spikesorting.plot_projections(wavesThisCluster)

            # -- Plot events in time --
            plt.subplot2grid((6, 6), (5, 3), rowspan=1, colspan=3)
            spikesorting.plot_events_in_time(tsThisCluster)

            plt.subplots_adjust(wspace=0.7)
            fig_path = oneTT.clustersDir
            fig_name = 'TT{0}Cluster{1}.png'.format(tetrode, cluster)
            full_fig_path = os.path.join(fig_path, fig_name)
            print full_fig_path
            #plt.tight_layout()
            plt.savefig(full_fig_path, format='png')