Esempio n. 1
0
    def __init__(self, settings_):
        self.settings = settings_
        self.input_engine = STTEngine(
            pause_threshold=self.settings.SPEECH_RECOGNITION.get(
                'pause_threshold'),
            energy_theshold=self.settings.SPEECH_RECOGNITION.get(
                'energy_threshold'),
            ambient_duration=self.settings.SPEECH_RECOGNITION.get(
                'ambient_duration'),
            dynamic_energy_threshold=self.settings.SPEECH_RECOGNITION.get(
                'dynamic_energy_threshold'),
            sr=sr) if self.settings.GENERAL_SETTINGS.get(
                'input_mode') == InputMode.VOICE.value else TTTEngine()

        self.console_manager = ConsoleManager(
            log_settings=self.settings.ROOT_LOG_CONF, )
        self.output_engine = TTSEngine(
            console_manager=self.console_manager,
            speech_response_enabled=self.settings.GENERAL_SETTINGS.get(
                'response_in_speech'))
        self.response_creator = ResponseCreator()

        self.skill_analyzer = SkillAnalyzer(
            weight_measure=TfidfVectorizer,
            similarity_measure=cosine_similarity,
            args=self.settings.SKILL_ANALYZER.get('args'),
            skills_=SKILLS,
            sensitivity=self.settings.SKILL_ANALYZER.get('sensitivity'))
    def setUp(self):

        all_skills = {
            MongoCollections.CONTROL_SKILLS.value: CONTROL_SKILLS,
            MongoCollections.ENABLED_BASIC_SKILLS.value: ENABLED_BASIC_SKILLS,
        }
        for collection, documents in all_skills.items():
            db.update_collection(collection, documents)

        default_assistant_name = settings.DEFAULT_GENERAL_SETTINGS[
            'assistant_name']
        default_input_mode = settings.DEFAULT_GENERAL_SETTINGS['input_mode']
        default_response_in_speech = settings.DEFAULT_GENERAL_SETTINGS[
            'response_in_speech']

        default_settings = {
            'assistant_name': default_assistant_name,
            'input_mode': default_input_mode,
            'response_in_speech': default_response_in_speech,
        }

        db.update_collection(
            collection=MongoCollections.GENERAL_SETTINGS.value,
            documents=[default_settings])

        self.skill_analyzer = SkillAnalyzer(
            weight_measure=TfidfVectorizer,
            similarity_measure=cosine_similarity,
            args=settings.SKILL_ANALYZER.get('args'),
            sensitivity=settings.SKILL_ANALYZER.get('sensitivity'),
        )
 def setUp(self):
     start_mongoDB_server()
     db = MongoDB()
     self.skill_analyzer = SkillAnalyzer(
         weight_measure=TfidfVectorizer,
         similarity_measure=cosine_similarity,
         args=SKILL_ANALYZER.get('args'),
         sensitivity=SKILL_ANALYZER.get('sensitivity'),
         db=db)
Esempio n. 4
0
 def __init__(self, console_manager, settings_):
     self.console_manager = console_manager
     self.settings = settings_
     self.response_creator = ResponseCreator()
     self.skill_analyzer = SkillAnalyzer(
         weight_measure=TfidfVectorizer,
         similarity_measure=cosine_similarity,
         args=self.settings.SKILL_ANALYZER.get('args'),
         sensitivity=self.settings.SKILL_ANALYZER.get('sensitivity'),
     )
Esempio n. 5
0
    def __init__(self):
        self.input_engine = STTEngine(
            pause_threshold=SPEECH_RECOGNITION['pause_threshold'],
            energy_theshold=SPEECH_RECOGNITION['energy_threshold'],
            ambient_duration=SPEECH_RECOGNITION['ambient_duration'],
            dynamic_energy_threshold=SPEECH_RECOGNITION[
                'dynamic_energy_threshold'],
            sr=sr) if GENERAL_SETTINGS['user_voice_input'] else TTTEngine()

        self.console_manager = ConsoleManager(log_settings=ROOT_LOG_CONF, )
        self.output_engine = TTSEngine(
            console_manager=self.console_manager,
            speech_response_enabled=GENERAL_SETTINGS['response_in_speech'])
        self.response_creator = ResponseCreator()

        self.skill_analyzer = SkillAnalyzer(
            weight_measure=TfidfVectorizer,
            similarity_measure=cosine_similarity,
            args=ANALYZER['args'],
            skills_=SKILLS,
            sensitivity=ANALYZER['sensitivity'])

        self.skill_controller = SkillController(
            settings_=GENERAL_SETTINGS,
            input_engine=self.input_engine,
            analyzer=self.skill_analyzer,
            control_skills=CONTROL_SKILLS,
        )
class SkillTests(unittest.TestCase):
    def setUp(self):
        start_mongoDB_server()
        db = MongoDB()
        self.skill_analyzer = SkillAnalyzer(
            weight_measure=TfidfVectorizer,
            similarity_measure=cosine_similarity,
            args=SKILL_ANALYZER.get('args'),
            sensitivity=SKILL_ANALYZER.get('sensitivity'),
            db=db)

    def tearDown(self):
        stop_mongoDB_server()

    def test_extract(self):
        """
        Test few extraction cases on basic skills
        """

        # Internet skill extraction
        tell_date_func_name = InternetSkills.internet_availability.__name__
        internet_conenction_tag = 'internet conection'
        extracted_internet_conenction_func_name = self.skill_analyzer.extract(
            internet_conenction_tag).get('func')
        self.assertEqual(tell_date_func_name,
                         extracted_internet_conenction_func_name)

        # Time skill extraction
        tell_time_func_name = DatetimeSkills.tell_the_time.__name__
        time_tag = 'time'
        extracted_time_func_name = self.skill_analyzer.extract(time_tag).get(
            'func')
        self.assertEqual(tell_time_func_name, extracted_time_func_name)

        # Date skill extraction
        tell_date_func_name = DatetimeSkills.tell_the_date.__name__
        date_tag = 'date'
        extracted_date_func_name = self.skill_analyzer.extract(date_tag).get(
            'func')
        self.assertEqual(tell_date_func_name, extracted_date_func_name)
Esempio n. 7
0
    def __init__(self, settings_, db):
        self.settings = settings_
        self.db = db
        self.input_engine = engines.STTEngine(
                                        pause_threshold=self.settings.SPEECH_RECOGNITION.get('pause_threshold'),
                                        energy_theshold=self.settings.SPEECH_RECOGNITION.get('energy_threshold'),
                                        ambient_duration=self.settings.SPEECH_RECOGNITION.get('ambient_duration'),
                                        dynamic_energy_threshold=self.settings.SPEECH_RECOGNITION.get(
                                            'dynamic_energy_threshold'),
                                        sr=sr
                                        ) if db.get_documents(collection='general_settings')[0]['input_mode'] == InputMode.VOICE.value \
            else engines.TTTEngine()

        self.output_engine = engines.TTSEngine() if db.get_documents(collection='general_settings')[0]['response_in_speech'] \
            else engines.TTTEngine()
        self.response_creator = ResponseCreator()
        self.skill_analyzer = SkillAnalyzer(
            weight_measure=TfidfVectorizer,
            similarity_measure=cosine_similarity,
            args=self.settings.SKILL_ANALYZER.get('args'),
            sensitivity=self.settings.SKILL_ANALYZER.get('sensitivity'),
            db=self.db)
Esempio n. 8
0
    def __init__(self):
        self.input_engine = SPEECH_ENGINES[SPEECH_RECOGNITION['recognizer']]()

        self.console_manager = ConsoleManager(log_settings=ROOT_LOG_CONF, )
        self.output_engine = TTSEngine(
            console_manager=self.console_manager,
            speech_response_enabled=GENERAL_SETTINGS['response_in_speech'])
        self.response_creator = ResponseCreator()

        self.skill_analyzer = SkillAnalyzer(
            weight_measure=TfidfVectorizer,
            similarity_measure=cosine_similarity,
            args=ANALYZER['args'],
            skills_=SKILLS,
            sensitivity=ANALYZER['sensitivity'])

        self.skill_controller = SkillController(
            settings_=GENERAL_SETTINGS,
            input_engine=self.input_engine,
            analyzer=self.skill_analyzer,
            control_skills=CONTROL_SKILLS,
        )
Esempio n. 9
0
class Processor:
    def __init__(self, console_manager, settings_):
        self.console_manager = console_manager
        self.settings = settings_
        self.response_creator = ResponseCreator()
        self.skill_analyzer = SkillAnalyzer(
            weight_measure=TfidfVectorizer,
            similarity_measure=cosine_similarity,
            args=self.settings.SKILL_ANALYZER.get('args'),
            sensitivity=self.settings.SKILL_ANALYZER.get('sensitivity'),
        )

    def run(self):
        """
         Assistant starting point.

        - STEP 1: Get user input based on the input mode (voice or text)
        - STEP 2: Matches the input with a skill
        - STEP 3: Create a response
        - STEP 4: Execute matched skill
        - STEP 5: Insert user transcript and response in history collection (in MongoDB)

        """
        # STEP 1
        transcript = jarvis.input_engine.recognize_input()

        # STEP 2
        skill_to_execute = self._extract_skill(transcript)

        # STEP 3
        response = self.response_creator.create_positive_response(transcript) if skill_to_execute \
            else self.response_creator.create_negative_response(transcript)
        jarvis.output_engine.assistant_response(response)

        # STEP 4
        self._execute_skill(skill_to_execute)

        # STEP 5
        record = {
            'user_transcript': transcript,
            'response': response if response else '--',
            'executed_skill': skill_to_execute if skill_to_execute else '--'
        }

        db.insert_many_documents('history', [record])

    def _extract_skill(self, transcript):
        skill = self.skill_analyzer.extract(transcript)
        if skill:
            return {'voice_transcript': transcript, 'skill': skill}

    @staticmethod
    def _execute_skill(skill):
        if skill:
            ActivationSkills.enable_assistant()
            try:
                logging.debug('Executing skill {0}'.format(
                    skill.get('skill').get('name')))
                skill_func_name = skill.get('skill').get('func')
                skill_func = skill_objects[skill_func_name]
                skill_func(**skill)
            except Exception as e:
                logging.debug(
                    "Error with the execution of skill with message {0}".
                    format(e))
Esempio n. 10
0
class Processor:
    def __init__(self, settings_):
        self.settings = settings_
        self.input_engine = STTEngine(
            pause_threshold=self.settings.SPEECH_RECOGNITION.get(
                'pause_threshold'),
            energy_theshold=self.settings.SPEECH_RECOGNITION.get(
                'energy_threshold'),
            ambient_duration=self.settings.SPEECH_RECOGNITION.get(
                'ambient_duration'),
            dynamic_energy_threshold=self.settings.SPEECH_RECOGNITION.get(
                'dynamic_energy_threshold'),
            sr=sr) if self.settings.GENERAL_SETTINGS.get(
                'input_mode') == InputMode.VOICE.value else TTTEngine()

        self.console_manager = ConsoleManager(
            log_settings=self.settings.ROOT_LOG_CONF, )
        self.output_engine = TTSEngine(
            console_manager=self.console_manager,
            speech_response_enabled=self.settings.GENERAL_SETTINGS.get(
                'response_in_speech'))
        self.response_creator = ResponseCreator()

        self.skill_analyzer = SkillAnalyzer(
            weight_measure=TfidfVectorizer,
            similarity_measure=cosine_similarity,
            args=self.settings.SKILL_ANALYZER.get('args'),
            skills_=SKILLS,
            sensitivity=self.settings.SKILL_ANALYZER.get('sensitivity'))

    def run(self):

        self._traped_until_assistant_is_enabled()

        transcript = self.input_engine.recognize_input()
        skill_to_execute = self._extract_skill(transcript)
        response = self.response_creator.create_positive_response(transcript) if skill_to_execute \
            else self.response_creator.create_negative_response(transcript)

        self.output_engine.assistant_response(response)
        self._execute_skill(skill_to_execute)

    def _execute_skill(self, skill):
        if skill:
            try:
                skill_method = skill.get('skill').get('skill')
                logging.debug('Executing skill {0}'.format(skill))
                skill_method(**skill)
            except Exception as e:
                logging.debug(
                    "Error with the execution of skill with message {0}".
                    format(e))

    def _traped_until_assistant_is_enabled(self):
        if self.settings.GENERAL_SETTINGS.get(
                'input_mode') == InputMode.VOICE.value:
            while not ExecutionState.is_ready_to_execute():
                voice_transcript = self.input_engine.recognize_input()
                transcript_words = voice_transcript.split()
                enable_tag = set(transcript_words).intersection(
                    CONTROL_SKILLS.get('enable_assistant').get('tags'))

                if bool(enable_tag):
                    CONTROL_SKILLS.get('enable_assistant').get('skill')()
                    ExecutionState.update()

    def _extract_skill(self, transcript):
        skill = self.skill_analyzer.extract(transcript)
        if skill:
            return {'voice_transcript': transcript, 'skill': skill}
class TestSkillMatching(unittest.TestCase):
    def setUp(self):

        all_skills = {
            MongoCollections.CONTROL_SKILLS.value: CONTROL_SKILLS,
            MongoCollections.ENABLED_BASIC_SKILLS.value: ENABLED_BASIC_SKILLS,
        }
        for collection, documents in all_skills.items():
            db.update_collection(collection, documents)

        default_assistant_name = settings.DEFAULT_GENERAL_SETTINGS[
            'assistant_name']
        default_input_mode = settings.DEFAULT_GENERAL_SETTINGS['input_mode']
        default_response_in_speech = settings.DEFAULT_GENERAL_SETTINGS[
            'response_in_speech']

        default_settings = {
            'assistant_name': default_assistant_name,
            'input_mode': default_input_mode,
            'response_in_speech': default_response_in_speech,
        }

        db.update_collection(
            collection=MongoCollections.GENERAL_SETTINGS.value,
            documents=[default_settings])

        self.skill_analyzer = SkillAnalyzer(
            weight_measure=TfidfVectorizer,
            similarity_measure=cosine_similarity,
            args=settings.SKILL_ANALYZER.get('args'),
            sensitivity=settings.SKILL_ANALYZER.get('sensitivity'),
        )

    def test_all_skill_matches(self):
        """
        In this test we examine the matches or  ALL skill tags with the functions
        If all skills matched right then the test passes otherwise not.

        At the end we print a report with all the not matched cases.

        """

        verifications_errors = []

        for basic_skill in BASIC_SKILLS:
            print(
                '--------------------------------------------------------------------------------------'
            )
            print('Examine skill: {0}'.format(basic_skill.get('name')))
            for tag in basic_skill.get('tags', ).split(','):
                # If the skill has matching tags
                if tag:
                    expected_skill = basic_skill.get('name')
                    actual_skill = self.skill_analyzer.extract(tag).get('name')
                    try:
                        self.assertEqual(expected_skill, actual_skill)
                    except AssertionError as e:
                        verifications_errors.append({'tag': tag, 'error': e})

        print(
            '-------------------------------------- SKILLS MATCHING REPORT --------------------------------------'
        )
        if verifications_errors:
            for increment, e in enumerate(verifications_errors):
                print('{0})'.format(increment))
                print('Not correct match with tag: {0}'.format(e.get('tag')))
                print('Assertion values (expected != actual): {0}'.format(
                    e.get('error')))
            raise AssertionError
        else:
            print('All skills matched correctly!')
Esempio n. 12
0
class Processor:
    def __init__(self, settings_, db):
        self.settings = settings_
        self.db = db
        self.input_engine = engines.STTEngine(
                                        pause_threshold=self.settings.SPEECH_RECOGNITION.get('pause_threshold'),
                                        energy_theshold=self.settings.SPEECH_RECOGNITION.get('energy_threshold'),
                                        ambient_duration=self.settings.SPEECH_RECOGNITION.get('ambient_duration'),
                                        dynamic_energy_threshold=self.settings.SPEECH_RECOGNITION.get(
                                            'dynamic_energy_threshold'),
                                        sr=sr
                                        ) if db.get_documents(collection='general_settings')[0]['input_mode'] == InputMode.VOICE.value \
            else engines.TTTEngine()

        self.output_engine = engines.TTSEngine() if db.get_documents(collection='general_settings')[0]['response_in_speech'] \
            else engines.TTTEngine()
        self.response_creator = ResponseCreator()
        self.skill_analyzer = SkillAnalyzer(
            weight_measure=TfidfVectorizer,
            similarity_measure=cosine_similarity,
            args=self.settings.SKILL_ANALYZER.get('args'),
            sensitivity=self.settings.SKILL_ANALYZER.get('sensitivity'),
            db=self.db)

    def run(self):
        """
        This method is the assistant starting point.

        - STEP 1: Waiting for enable keyword (ONLY in 'voice' mode)
        - STEP 2: Retrieve input (voice or text)
        - STEP 3: Matches the input with a skill
        - STEP 4: Create a response
        - STEP 5: Execute matched skill
        - STEP 6: Insert user transcript and response in history collection (in MongoDB)

        """

        # STEP 1
        self._trapped_until_assistant_is_enabled()

        # STEP 2
        transcript = self.input_engine.recognize_input()

        # STEP 3
        skill_to_execute = self._extract_skill(transcript)

        # STEP 4
        response = self.response_creator.create_positive_response(transcript) if skill_to_execute \
            else self.response_creator.create_negative_response(transcript)
        self.output_engine.assistant_response(response)

        # STEP 5
        self._execute_skill(skill_to_execute)

        # STEP 6
        record = {
            'user_transcript': transcript,
            'response': response if response else '--',
            'executed_skill': skill_to_execute if skill_to_execute else '--'
        }
        self.db.insert_many_documents('history', [record])

    def _trapped_until_assistant_is_enabled(self):
        """
        In voice mode assistant waiting to hear an enable keyword to start, until then is trapped in a loop.
        """
        if self.db.get_documents(collection='general_settings'
                                 )[0]['input_mode'] == InputMode.VOICE.value:
            while not ExecutionState.is_ready_to_execute():
                voice_transcript = self.input_engine.recognize_input()
                transcript_words = voice_transcript.split()
                enable_skills = self.db.get_documents(
                    'control_skills', {'name': 'enable_assistant'})
                enable_tags = [skill.get('tags') for skill in enable_skills]
                enable_tag = set(transcript_words).intersection(enable_tags)

                if bool(enable_tag):
                    skill_name = self.db.get_documents(
                        'control_skills', {
                            'name': 'enable_assistant'
                        }).get('skills')
                    skill_object = skill_objects[skill_name]
                    skill_object()
                    ExecutionState.update()

    def _extract_skill(self, transcript):
        skill = self.skill_analyzer.extract(transcript)
        if skill:
            return {'voice_transcript': transcript, 'skill': skill}

    @staticmethod
    def _execute_skill(skill):
        if skill:
            try:
                logging.debug('Executing skill {0}'.format(
                    skill.get('skill').get('name')))
                skill_func_name = skill.get('skill').get('func')
                skill_func = skill_objects[skill_func_name]
                skill_func(**skill)
            except Exception as e:
                logging.debug(
                    "Error with the execution of skill with message {0}".
                    format(e))