( b ), ( a ), ( a b + %s a ) ) """; ps = """ ( ( a - X^%s ), ( b - D X + %s ) ) """; for t in (2,3,5,7,11,13,17,19,23,27,31,37,43): #for t in (5,7): r1 = SolvableRing( rs1 % t ); r1c = SolvableRing( rs1c ); #print "SolvableRing: " + str(r1); #print "SolvableRing: " + str(r1c); #print; it = r1.ideal( ps % (t,t) ); #print "SolvableIdeal: " + str(it); #print; # compute I_{\phi_t} \cap WA_1^opp x = it.leftGB(); print "seq left x:", x; y = Ideal(x.pset).intersect(r1c.ring); len = y.list.size(); print "seq left y: ", y; print "seq left y len: ", len; #print;
# from jas import SolvableRing # WA_1 example rs = """ # solvable polynomials, Weyl algebra A_1: Rat(p,t,x,d) G RelationTable ( ( d ), ( x ), ( x d + 1 ) ) """ r = SolvableRing(rs) print "SolvableRing: " + str(r) print ps = """ ( ( x^7 ), ( x d + 7 ) ) """ i7 = r.ideal(ps) print "SolvableIdeal: " + str(i7) print i7rg = i7.leftGB()
# WA_32 solvable polynomial example rs = """ # solvable polynomials, Weyl algebra A_3,2: #Rat(a,b,e1,e2,e3) G|3| Quat(a,b,e1,e2,e3) G|3| RelationTable ( ( e3 ), ( e1 ), ( e1 e3 - e1 ), ( e3 ), ( e2 ), ( e2 e3 - e2 ) ) """; r = SolvableRing( rs ); print "SolvableRing: " + str(r); print; [a,b,e1,e2,e3] = r.gens(); print "gens =", [ str(f) for f in r.gens() ]; f1 = e1 * e3**3 + e2**10 - a; f2 = e1**3 * e2**2 + e3; f3 = e3**3 + e3**2 - b; f4 = ( e3**2 * e2**3 + e1 )**3; #print "f1 = ", f1; #print "f2 = ", f2; #print "f3 = ", f3;
from jas import SolvableRing from jas import SolvableIdeal # U(sl_2_f) example rs = """ # solvable polynomials, U(sl_2_f): Rat(f,h) G RelationTable ( ( h ), ( f ), ( f h - 2 f ) ) """ r = SolvableRing(rs) print "SolvableRing: " + str(r) print ps = """ ( ( h^2 + f^3 ) ) """ f = SolvableIdeal(r, ps) print "SolvableIdeal: " + str(f) print rg = f.leftGB() print "seq left Output:", rg
from jas import startLog, terminate # WA_32 example rs = """ # solvable polynomials, Weyl algebra A_3,2: Rat(a,b,e1,e2,e3) G RelationTable ( ( e3 ), ( e1 ), ( e1 e3 - e1 ), ( e3 ), ( e2 ), ( e2 e3 - e2 ) ) """; r = SolvableRing( rs ); print "SolvableRing: " + str(r); print; ps = """ ( ( e1 e3^3 + e2^10 - a ), ( e1^3 e2^2 + e3 ), ( e3^3 + e3^2 - b ) ) """; f = r.ideal( ps ); print "SolvableIdeal: " + str(f); print;
RelationTable ( ( b ), ( a ), ( a b + %s a ) ) """ ps = """ ( ( a - X^%s ), ( b - D X + %s ) ) """ for t in (2, 3, 5, 7, 11, 13, 17, 19, 23, 27, 31, 37, 43): #for t in (5,7): r1 = SolvableRing(rs1 % t) r1c = SolvableRing(rs1c) #print "SolvableRing: " + str(r1); #print "SolvableRing: " + str(r1c); #print; it = r1.ideal(ps % (t, t)) #print "SolvableIdeal: " + str(it); #print; # compute I_{\phi_t} \cap WA_1^opp x = it.leftGB() print "seq left x:", x y = Ideal(x.pset).intersect(r1c.ring) len = y.list.size() print "seq left y: ", y print "seq left y len: ", len #print;
#exit(0); rs = """ # solvable polynomials, Weyl algebra A_3,2: Rat(a,b,e1,e2,e3) L #Quat(a,b,e1,e2,e3) G|3| RelationTable ( ( e3 ), ( e1 ), ( e1 e3 - e1 ), ( e3 ), ( e2 ), ( e2 e3 - e2 ) ) """; r = SolvableRing( rs ); print "SolvableRing: " + str(r); print; print "gens =", [ str(f) for f in r.gens() ]; #[one,a,b,e1,e2,e3] = r.gens(); #[one,I,J,K,a,b,e1,e2,e3] = r.gens(); fs1 = e1 * e3**3 + e2**10 - a; fs2 = e1**3 * e2**2 + e3; fs3 = e3**3 + e3**2 - b; fs4 = ( e3**2 * e2**3 + e1 )**3; #print "fs1 = ", fs1; #print "fs2 = ", fs2;
( h ), ( f ), ( f h - 2 f ) ) """; ps = """ ( ( e - X ), ( f + D^2 X ), ( h - 2 D X ) ) """; startLog(); r1 = SolvableRing( rs1 ); r1c = SolvableRing( rs1c ); #print "SolvableRing: " + str(r1); #print "SolvableRing: " + str(r1c); print; it = r1.ideal( ps ); print "SolvableIdeal: " + str(it); print; # compute I_{\phi_t} \cap WA_1^opp x = it.leftGB(); print "seq left x:", x; y = Ideal(x.pset).intersect(r1c.ring); len = y.list.size(); print "seq left y: ", y; print "seq left y len: ", len; print;
( x ), ( v ), ( - v x ), ( y ), ( v ), ( - v y ), ( z ), ( v ), ( - v z ), ( x ), ( w ), ( - w x ), ( y ), ( w ), ( - w y ), ( z ), ( w ), ( - w z ), ( y ), ( x ), ( - x y ), ( z ), ( x ), ( - x z ), ( z ), ( y ), ( - y z ) ) """ r = SolvableRing(rs) print "SolvableRing: " + str(r) print # ( a b + c f + g h ), # ( u v + w x + y z ), # ( a v + w x + y z ), ps = """ ( ( a b + c f + g h ), ( u v + w x + y z ), ( a^2 ), ( b^2 ), ( c^2 ), ( f^2 ),
( ( f ), ( e ), ( e f - h ), ( h ), ( e ), ( e h + 2 e ), ( h ), ( f ), ( f h - 2 f ) ) """ ps = """ ( ( e - X ), ( f + D^2 X ), ( h - 2 D X ) ) """ r1 = SolvableRing(rs1) r1c = SolvableRing(rs1c) #print "SolvableRing: " + str(r1); #print "SolvableRing: " + str(r1c); print it = SolvableIdeal(r1, ps) print "SolvableIdeal: " + str(it) print # compute I_{\phi_t} \cap WA_1^opp x = it.leftGB() print "seq left x:", x y = Ideal(x.pset).intersect(r1c.ring) len = y.list.size() print "seq left y: ", y print "seq left y len: ", len print
from jas import SolvableIdeal # WA_32 solvable polynomial example rs = """ # solvable polynomials, Weyl algebra A_3,2: #Rat(a,b,e1,e2,e3) G|3| Quat(a,b,e1,e2,e3) G|3| RelationTable ( ( e3 ), ( e1 ), ( e1 e3 - e1 ), ( e3 ), ( e2 ), ( e2 e3 - e2 ) ) """ r = SolvableRing(rs) print "SolvableRing: " + str(r) print [a, b, e1, e2, e3] = r.gens() print "gens =", [str(f) for f in r.gens()] f1 = e1 * e3**3 + e2**10 - a f2 = e1**3 * e2**2 + e3 f3 = e3**3 + e3**2 - b f4 = (e3**2 * e2**3 + e1)**3 #print "f1 = ", f1; #print "f2 = ", f2; #print "f3 = ", f3;
( b ), ( a ), ( a b + %s a ) ) """; ps = """ ( ( a - X^%s ), ( b - D X + %s ) ) """; for t in (2,3,5,7,11,13,17,19,23,27,31,37,43): #for t in (5,7): r1 = SolvableRing( rs1 % t ); r1c = SolvableRing( rs1c ); #print "SolvableRing: " + str(r1); #print "SolvableRing: " + str(r1c); #print; it = SolvableIdeal( r1, ps % (t,t) ); #print "SolvableIdeal: " + str(it); #print; # compute I_{\phi_t} \cap WA_1^opp x = it.leftGB(); print "seq left x:", x; y = Ideal(x.pset).intersect(r1c.ring); len = y.list.size(); print "seq left y: ", y; print "seq left y len: ", len; #print;
from jas import SolvableRing # WA_1 example rs = """ # solvable polynomials, Weyl algebra A_1: Rat(p,t,x,d) G RelationTable ( ( d ), ( x ), ( x d + 1 ) ) """; r = SolvableRing( rs ); print "SolvableRing: " + str(r); print; ps = """ ( ( x^7 ), ( x d + 7 ) ) """; i7 = r.ideal( ps ); print "SolvableIdeal: " + str(i7); print;