Esempio n. 1
0
def _use_cholesky(u, params):
    """Uses Cholesky decomposition."""
    a, b, c = params
    _, n = u.shape
    x = c * u.T.conj() @ u + jnp.eye(n)

    # `y` is lower triangular.
    y = lax_linalg.cholesky(x, symmetrize_input=False)

    z = lax_linalg.triangular_solve(y,
                                    u.T,
                                    left_side=True,
                                    lower=True,
                                    conjugate_a=True).conj()

    z = lax_linalg.triangular_solve(y,
                                    z,
                                    left_side=True,
                                    lower=True,
                                    transpose_a=True,
                                    conjugate_a=True).T.conj()

    e = b / c
    u = e * u + (a - e) * z
    return u
Esempio n. 2
0
def _use_cholesky(u, m, n, params):
    """QDWH iteration using Cholesky decomposition.

  Args:
  u: a matrix, with static (padded) shape M x N
  m, n: the dynamic shape of the matrix, where m <= M and n <= N.
  params: the QDWH parameters.
  """
    a, b, c = params
    _, N = u.shape
    x = c * (u.T.conj() @ u) + jnp.eye(N, dtype=jnp.dtype(u))
    # Pads the lower-right corner with the identity matrix to prevent the Cholesky
    # decomposition from failing due to the matrix not being PSD if padded with
    # zeros.
    x = _mask(x, (n, n), jnp.eye(N, dtype=x.dtype))

    # `y` is lower triangular.
    y = lax_linalg.cholesky(x, symmetrize_input=False)

    z = lax_linalg.triangular_solve(y,
                                    u.T,
                                    left_side=True,
                                    lower=True,
                                    conjugate_a=True).conj()

    z = lax_linalg.triangular_solve(y,
                                    z,
                                    left_side=True,
                                    lower=True,
                                    transpose_a=True,
                                    conjugate_a=True).T.conj()

    e = b / c
    u = e * u + (a - e) * z
    return u
Esempio n. 3
0
def _cho_solve(c, b, lower):
  c, b = np_linalg._promote_arg_dtypes(jnp.asarray(c), jnp.asarray(b))
  lax_linalg._check_solve_shapes(c, b)
  b = lax_linalg.triangular_solve(c, b, left_side=True, lower=lower,
                                  transpose_a=not lower, conjugate_a=not lower)
  b = lax_linalg.triangular_solve(c, b, left_side=True, lower=lower,
                                  transpose_a=lower, conjugate_a=lower)
  return b
Esempio n. 4
0
def _solve_triangular(a, b, trans, lower, unit_diagonal):
    if trans == 0 or trans == "N":
        transpose_a, conjugate_a = False, False
    elif trans == 1 or trans == "T":
        transpose_a, conjugate_a = True, False
    elif trans == 2 or trans == "C":
        transpose_a, conjugate_a = True, True
    else:
        raise ValueError(f"Invalid 'trans' value {trans}")

    a, b = _promote_dtypes_inexact(jnp.asarray(a), jnp.asarray(b))

    # lax_linalg.triangular_solve only supports matrix 'b's at the moment.
    b_is_vector = jnp.ndim(a) == jnp.ndim(b) + 1
    if b_is_vector:
        b = b[..., None]
    out = lax_linalg.triangular_solve(a,
                                      b,
                                      left_side=True,
                                      lower=lower,
                                      transpose_a=transpose_a,
                                      conjugate_a=conjugate_a,
                                      unit_diagonal=unit_diagonal)
    if b_is_vector:
        return out[..., 0]
    else:
        return out
Esempio n. 5
0
def _cofactor_solve(a, b):
    """Equivalent to det(a)*solve(a, b) for nonsingular mat.

  Intermediate function used for jvp and vjp of det.
  This function borrows heavily from jax.numpy.linalg.solve and
  jax.numpy.linalg.slogdet to compute the gradient of the determinant
  in a way that is well defined even for low rank matrices.

  This function handles two different cases:
  * rank(a) == n or n-1
  * rank(a) < n-1

  For rank n-1 matrices, the gradient of the determinant is a rank 1 matrix.
  Rather than computing det(a)*solve(a, b), which would return NaN, we work
  directly with the LU decomposition. If a = p @ l @ u, then
  det(a)*solve(a, b) =
  prod(diag(u)) * u^-1 @ l^-1 @ p^-1 b =
  prod(diag(u)) * triangular_solve(u, solve(p @ l, b))
  If a is rank n-1, then the lower right corner of u will be zero and the
  triangular_solve will fail.
  Let x = solve(p @ l, b) and y = det(a)*solve(a, b).
  Then y_{n}
  x_{n} / u_{nn} * prod_{i=1...n}(u_{ii}) =
  x_{n} * prod_{i=1...n-1}(u_{ii})
  So by replacing the lower-right corner of u with prod_{i=1...n-1}(u_{ii})^-1
  we can avoid the triangular_solve failing.
  To correctly compute the rest of y_{i} for i != n, we simply multiply
  x_{i} by det(a) for all i != n, which will be zero if rank(a) = n-1.

  For the second case, a check is done on the matrix to see if `solve`
  returns NaN or Inf, and gives a matrix of zeros as a result, as the
  gradient of the determinant of a matrix with rank less than n-1 is 0.
  This will still return the correct value for rank n-1 matrices, as the check
  is applied *after* the lower right corner of u has been updated.

  Args:
    a: A square matrix or batch of matrices, possibly singular.
    b: A matrix, or batch of matrices of the same dimension as a.

  Returns:
    det(a) and cofactor(a)^T*b, aka adjugate(a)*b
  """
    a = _promote_arg_dtypes(jnp.asarray(a))
    b = _promote_arg_dtypes(jnp.asarray(b))
    a_shape = jnp.shape(a)
    b_shape = jnp.shape(b)
    a_ndims = len(a_shape)
    if not (a_ndims >= 2 and a_shape[-1] == a_shape[-2]
            and b_shape[-2:] == a_shape[-2:]):
        msg = ("The arguments to _cofactor_solve must have shapes "
               "a=[..., m, m] and b=[..., m, m]; got a={} and b={}")
        raise ValueError(msg.format(a_shape, b_shape))
    if a_shape[-1] == 1:
        return a[..., 0, 0], b
    # lu contains u in the upper triangular matrix and l in the strict lower
    # triangular matrix.
    # The diagonal of l is set to ones without loss of generality.
    lu, pivots, permutation = lax_linalg.lu(a)
    dtype = lax.dtype(a)
    batch_dims = lax.broadcast_shapes(lu.shape[:-2], b.shape[:-2])
    x = jnp.broadcast_to(b, batch_dims + b.shape[-2:])
    lu = jnp.broadcast_to(lu, batch_dims + lu.shape[-2:])
    # Compute (partial) determinant, ignoring last diagonal of LU
    diag = jnp.diagonal(lu, axis1=-2, axis2=-1)
    parity = jnp.count_nonzero(pivots != jnp.arange(a_shape[-1]), axis=-1)
    sign = jnp.asarray(-2 * (parity % 2) + 1, dtype=dtype)
    # partial_det[:, -1] contains the full determinant and
    # partial_det[:, -2] contains det(u) / u_{nn}.
    partial_det = jnp.cumprod(diag, axis=-1) * sign[..., None]
    lu = lu.at[..., -1, -1].set(1.0 / partial_det[..., -2])
    permutation = jnp.broadcast_to(permutation, batch_dims + (a_shape[-1], ))
    iotas = jnp.ix_(*(lax.iota(jnp.int32, b) for b in batch_dims + (1, )))
    # filter out any matrices that are not full rank
    d = jnp.ones(x.shape[:-1], x.dtype)
    d = lax_linalg.triangular_solve(lu, d, left_side=True, lower=False)
    d = jnp.any(jnp.logical_or(jnp.isnan(d), jnp.isinf(d)), axis=-1)
    d = jnp.tile(d[..., None, None], d.ndim * (1, ) + x.shape[-2:])
    x = jnp.where(d, jnp.zeros_like(x), x)  # first filter
    x = x[iotas[:-1] + (permutation, slice(None))]
    x = lax_linalg.triangular_solve(lu,
                                    x,
                                    left_side=True,
                                    lower=True,
                                    unit_diagonal=True)
    x = jnp.concatenate(
        (x[..., :-1, :] * partial_det[..., -1, None, None], x[..., -1:, :]),
        axis=-2)
    x = lax_linalg.triangular_solve(lu, x, left_side=True, lower=False)
    x = jnp.where(d, jnp.zeros_like(x), x)  # second filter

    return partial_det[..., -1], x