Esempio n. 1
0
def _xla_call_translation_rule(ctx,
                               avals_in,
                               avals_out,
                               *in_nodes,
                               name,
                               backend=None,
                               call_jaxpr,
                               donated_invars,
                               inline=None,
                               device=None):
    del device, donated_invars, inline  # Ignored.
    c = ctx.builder
    check_backend_matches(backend, ctx.platform)
    subc = xc.XlaBuilder(f"jit_{name}")
    args = [parameter(subc, i, c.get_shape(n)) for i, n in enumerate(in_nodes)]
    sub_ctx = ctx.replace(builder=subc,
                          name_stack=extend_name_stack(ctx.name_stack,
                                                       wrap_name(name, 'jit')))
    out_nodes = jaxpr_subcomp(sub_ctx, call_jaxpr, (), *args)

    if len(out_nodes) == 1:
        subc = subc.Build(out_nodes[0])
        return [xops.Call(c, subc, list(in_nodes))]
    else:
        subc = subc.Build(xops.Tuple(subc, out_nodes))
        return xla_destructure(c, xops.Call(c, subc, list(in_nodes)))
Esempio n. 2
0
def _sharded_jit_translation_rule(ctx, avals_in, avals_out, *in_nodes,
                                  in_parts, out_parts_thunk, nparts, name,
                                  call_jaxpr, local_in_parts,
                                  local_out_parts_thunk, local_nparts):
    subc = xc.XlaBuilder(f"sharded_jit_{name}")

    # We assume any extra leading in_nodes are constants and replicate them.
    num_extra_nodes = len(in_nodes) - len(in_parts)
    assert num_extra_nodes >= 0
    in_parts = (None, ) * num_extra_nodes + in_parts

    args = []
    for i, (n, sharding) in enumerate(safe_zip(in_nodes, in_parts)):
        # We use xla.set_sharding instead of xla.with_sharding because inlined calls
        # shouldn't have shardings set directly on the inputs or outputs.
        arg = xla.parameter(subc, i, ctx.builder.GetShape(n))
        args.append(xla.set_sharding(subc, arg, sharding))

    sub_ctx = ctx.replace(builder=subc,
                          name_stack=extend_name_stack(
                              wrap_name(name, "sharded_jit")))
    out_nodes = xla.jaxpr_subcomp(sub_ctx, call_jaxpr, (), *args)
    out_parts = out_parts_thunk()
    assert len(out_parts) == len(out_nodes)
    out_nodes = [
        xla.set_sharding(subc, out, sharding)
        for out, sharding in safe_zip(out_nodes, out_parts)
    ]

    subc = subc.build(xops.Tuple(subc, out_nodes))
    return xla.xla_destructure(ctx.builder,
                               xops.Call(ctx.builder, subc, list(in_nodes)))
Esempio n. 3
0
def _remat_using_cond(ctx, in_nodes, name, call_jaxpr):
    """Lower remat to a Conditional which always returns true. This:
    1. Circumvents common subexpression elimination.
    2. In common case of `jax.grad(jax.remat(f))`, ensures the remat blocks
       occur after the primal blocks, because cotangent is an input to the
       Conditional."""
    # Fake condition which always selects True branch.
    c = ctx.builder
    rng = xops.RngUniform(xops.Constant(c, np.array(0, dtype=np.float32)),
                          xops.Constant(c, np.array(1, dtype=np.float32)),
                          xc.Shape.array_shape(xc.PrimitiveType.F32, []))
    pred = xops.Lt(rng, xops.Constant(c, np.array(2, dtype=np.float32)))

    true_op = xops.Tuple(c, in_nodes)
    remat_subc = xc.XlaBuilder("remat_call_subcomputation")
    input_op = parameter(remat_subc, 0, c.get_shape(true_op), replicated=[])
    args = xla_destructure(remat_subc, input_op)
    sub_ctx = ctx.replace(builder=remat_subc,
                          name_stack=extend_name_stack(
                              ctx.name_stack, wrap_name(name, 'remat')))
    out_nodes = jaxpr_subcomp(sub_ctx, call_jaxpr, (), *args)
    out_node_shapes = [remat_subc.get_shape(o) for o in out_nodes]
    remat_subc = remat_subc.build(xops.Tuple(remat_subc, out_nodes))

    false_op = true_op
    dummy_subc = xc.XlaBuilder("remat_call_dummy_subcomputation")
    parameter(dummy_subc, 0, c.get_shape(false_op), replicated=[])
    out_nodes = [_zeros(dummy_subc, s) for s in out_node_shapes]
    dummy_subc = dummy_subc.build(xops.Tuple(dummy_subc, out_nodes))

    return xla_destructure(
        c, xops.Conditional(pred, true_op, remat_subc, false_op, dummy_subc))
Esempio n. 4
0
def _remat_using_while(ctx, in_nodes, name, call_jaxpr):
    """Lower remat to a single iteration while loop."""
    c = ctx.builder
    # Dummy subc for getting subcomp shapes.
    dummy_inputs = xops.Tuple(c, in_nodes)
    dummy_subc = xc.XlaBuilder("remat_dummy_subcomputation")
    dummy_input_op = parameter(dummy_subc,
                               0,
                               c.get_shape(dummy_inputs),
                               replicated=[])
    dummy_args = xla_destructure(dummy_subc, dummy_input_op)
    dummy_ctx = ctx.replace(builder=dummy_subc,
                            name_stack=extend_name_stack(
                                ctx.name_stack, wrap_name(name, 'remat')))
    dummy_subcomp_outs = jaxpr_subcomp(dummy_ctx, call_jaxpr, (), *dummy_args)
    out_node_shapes = [dummy_subc.get_shape(o) for o in dummy_subcomp_outs]

    i_init = xops.Constant(c, np.array(0, dtype=np.int32))
    zeros_like_outs = [_zeros(c, s) for s in out_node_shapes]
    inputs = xops.Tuple(c, [i_init] + list(in_nodes) + zeros_like_outs)

    cond_subc = xc.XlaBuilder("remat_cond_subcomputation")
    input_op = parameter(cond_subc, 0, c.get_shape(inputs), replicated=[])
    i = xops.GetTupleElement(input_op, 0)
    rng = xops.RngUniform(
        xops.Constant(cond_subc, np.array(1, dtype=np.int32)),
        xops.Constant(cond_subc, np.array(2, dtype=np.int32)),
        xc.Shape.array_shape(xc.PrimitiveType.S32, []))
    cond_subc = cond_subc.build(xops.Lt(i, rng))

    body_subc = xc.XlaBuilder("remat_body_subcomputation")
    input_op = parameter(body_subc, 0, c.get_shape(inputs), replicated=[])
    i, *args = xla_destructure(body_subc, input_op)[:len(in_nodes) + 1]
    i_next = xops.Add(i, xops.Constant(body_subc, np.array(1, dtype=np.int32)))
    body_ctx = ctx.replace(builder=body_subc,
                           name_stack=extend_name_stack(
                               ctx.name_stack, wrap_name(name, 'remat')))
    subcomp_outs = jaxpr_subcomp(body_ctx, call_jaxpr, (), *args)
    out_nodes = [i_next] + args + list(subcomp_outs)
    body_subc = body_subc.build(xops.Tuple(body_subc, out_nodes))
    outs = xops.While(cond_subc, body_subc, inputs)
    return xla_destructure(c, outs)[len(in_nodes) + 1:]
Esempio n. 5
0
File: xla.py Progetto: rsepassi/jax
def _named_call_translation_rule(ctx, avals_in, avals_out, *in_nodes,
                                 name="core_call", backend=None, call_jaxpr):
  check_backend_matches(backend, ctx.platform)
  c = ctx.builder
  subc = xc.XlaBuilder(name)
  args = [parameter(subc, i, c.GetShape(n)) for i, n in enumerate(in_nodes)]
  sub_ctx = ctx.replace(builder=subc,
                        name_stack=extend_name_stack(ctx.name_stack, name))
  out_nodes = jaxpr_subcomp(sub_ctx, call_jaxpr, (), *args)
  subc = subc.Build(xops.Tuple(subc, out_nodes))
  return xla_destructure(c, xops.Call(c, subc, list(in_nodes)))
Esempio n. 6
0
def _sharded_jit_lowering(ctx, *in_nodes, in_parts, out_parts_thunk, nparts,
                          name, call_jaxpr, local_in_parts,
                          local_out_parts_thunk, local_nparts):
    # We assume any extra leading in_nodes are constants and replicate them.
    num_extra_nodes = len(in_nodes) - len(in_parts)
    assert num_extra_nodes >= 0
    in_parts = (None, ) * num_extra_nodes + in_parts

    args = []
    for ns, sharding in safe_zip(
            safe_map(mlir.wrap_singleton_ir_values, in_nodes), in_parts):
        if sharding is not None:
            args.append([
                mlir.wrap_with_sharding_op(n, xla.sharding_to_proto(sharding))
                for n in ns
            ])
        else:
            args.append(ns)

    sub_ctx = ctx.module_context.replace(
        name_stack=extend_name_stack(wrap_name(name, "sharded_jit")))
    fn = mlir.lower_jaxpr_to_fun(sub_ctx, f"sharded_jit_{name}",
                                 core.ClosedJaxpr(call_jaxpr, ()))

    output_types = safe_map(mlir.aval_to_ir_types, ctx.avals_out)
    flat_output_types = util.flatten(output_types)
    call = std.CallOp(flat_output_types,
                      ir.FlatSymbolRefAttr.get(fn.name.value),
                      mlir.flatten_lowering_ir_args(args))
    out_nodes = util.unflatten(call.results, safe_map(len, output_types))

    out_parts = out_parts_thunk()
    outputs = []
    for ns, sharding in safe_zip(out_nodes, out_parts):
        if sharding is not None:
            outputs.append([
                mlir.wrap_with_sharding_op(n, xla.sharding_to_proto(sharding))
                for n in ns
            ])
        else:
            outputs.append(ns)
    return outputs
Esempio n. 7
0
def _cond_lowering(ctx, index, *args, branches, linear):
    del linear  # Unused.
    joined_effects = core.join_effects(*(branch.effects
                                         for branch in branches))
    ordered_effects = [
        eff for eff in joined_effects if eff in core.ordered_effects
    ]
    num_tokens = len(ordered_effects)
    tokens_in = ctx.tokens_in.subset(ordered_effects)
    output_token_types = [mlir.token_type() for _ in ordered_effects]
    output_types = [
        *output_token_types, *_map(mlir.aval_to_ir_types, ctx.avals_out)
    ]
    flat_output_types = util.flatten(output_types)

    # mhlo.CaseOp takes a single argument 'index' and the corresponding blocks
    # have no arguments; the computation within the block uses implicit
    # captures.
    case_op = mhlo.CaseOp(flat_output_types,
                          index=index,
                          num_branches=len(branches))
    name_stack = extend_name_stack(ctx.module_context.name_stack, 'cond')
    for i, jaxpr in enumerate(branches):
        branch = case_op.regions[i].blocks.append()
        with ir.InsertionPoint(branch):
            sub_ctx = ctx.module_context.replace(
                name_stack=xla.extend_name_stack(name_stack,
                                                 f'branch_{i}_fun'))
            out_vals, tokens_out = mlir.jaxpr_subcomp(
                sub_ctx, jaxpr.jaxpr, tokens_in,
                _map(mlir.ir_constants, jaxpr.consts),
                *_map(mlir.wrap_singleton_ir_values, args))
            out_tokens = [tokens_out.get(eff) for eff in ordered_effects]
            out_vals = [*out_tokens, *out_vals]
            mhlo.ReturnOp(util.flatten(out_vals))

    tokens_and_outputs = util.unflatten(case_op.results,
                                        _map(len, output_types))
    tokens, outputs = util.split_list(tokens_and_outputs, [num_tokens])
    ctx.set_tokens_out(mlir.TokenSet(zip(ordered_effects, tokens)))
    return outputs
Esempio n. 8
0
def _sharded_callable(
        fun: lu.WrappedFun, nparts: Optional[int],
        in_parts: Tuple[pxla.PartitionsOrReplicated, ...],
        out_parts_thunk: Callable[[], Tuple[pxla.PartitionsOrReplicated, ...]],
        local_in_parts: Optional[Tuple[pxla.PartitionsOrReplicated, ...]],
        local_out_parts_thunk: Callable[[], Optional[Tuple[
            pxla.PartitionsOrReplicated,
            ...]]], local_nparts: Optional[int], name: str, *abstract_args):
    nrep = 1

    if local_in_parts is None:
        local_in_parts = in_parts

    global_abstract_args = [
        pxla.get_global_aval(arg, parts,
                             lparts) for arg, parts, lparts in safe_zip(
                                 abstract_args, in_parts, local_in_parts)
    ]

    if logging.vlog_is_on(2):
        logging.vlog(2, "abstract_args: %s", abstract_args)
        logging.vlog(2, "global_abstract_args: %s", global_abstract_args)
        logging.vlog(2, "in_parts: %s", in_parts)
        logging.vlog(2, "local_in_parts: %s", local_in_parts)

    jaxpr, global_out_avals, consts = pe.trace_to_jaxpr_final(
        fun, global_abstract_args)

    platform = xb.get_backend().platform
    if platform not in ["tpu", "gpu"]:
        # TODO(skye): fall back to regular jit?
        raise ValueError(f"sharded_jit not supported for {platform}")

    nparts = pxla.reconcile_num_partitions(jaxpr, nparts)
    assert nparts is not None
    if nparts > xb.device_count():
        raise ValueError(
            f"sharded_jit computation requires {nparts} devices, "
            f"but only {xb.device_count()} devices are available.")
    if xb.local_device_count() < nparts < xb.device_count():
        raise NotImplementedError(
            f"sharded_jit across multiple hosts must use all available devices. "
            f"Got {nparts} out of {xb.device_count()} requested devices "
            f"(local device count: {xb.local_device_count()})")

    if local_nparts is None:
        if nparts > xb.local_device_count():
            raise ValueError(
                "Specify 'local_nparts' when using cross-process sharded_jit "
                "and all inputs and outputs are replicated.")
        else:
            local_nparts = nparts
    if local_nparts > xb.local_device_count():
        raise ValueError(
            f"sharded_jit computation requires {local_nparts} local devices, "
            f"but only {xb.local_device_count()} local devices are available.")

    if logging.vlog_is_on(2):
        logging.vlog(2, "nparts: %d  local_nparts: %d", nparts, local_nparts)

    out_parts = out_parts_thunk()

    local_out_parts = local_out_parts_thunk()
    if local_out_parts is None:
        local_out_parts = out_parts

    if logging.vlog_is_on(2):
        logging.vlog(2, "out_parts: %s", out_parts)
        logging.vlog(2, "local_out_parts: %s", local_out_parts)

    local_out_avals = [
        pxla.get_local_aval(out, parts,
                            lparts) for out, parts, lparts in safe_zip(
                                global_out_avals, out_parts, local_out_parts)
    ]

    log_priority = logging.WARNING if config.jax_log_compiles else logging.DEBUG
    logging.log(log_priority, "Compiling %s for %d devices with args %s.",
                fun.__name__, nparts, global_abstract_args)

    c = xc.XlaBuilder("spjit_{}".format(fun.__name__))
    xla_consts = _map(partial(xla.pyval_to_ir_constant, c), consts)
    xla_args = _xla_sharded_args(c, global_abstract_args, in_parts)
    axis_env = xla.AxisEnv(nrep, (), ())
    ctx = xla.TranslationContext(
        c, platform, axis_env,
        extend_name_stack(wrap_name(name, "sharded_jit")))
    out_nodes = xla.jaxpr_subcomp(ctx, jaxpr, xla_consts, *xla_args)
    out_tuple = xla.with_sharding(c, out_parts, xops.Tuple, c, out_nodes)
    built = c.Build(out_tuple)

    if nparts <= xb.local_device_count():
        devices = xb.local_devices()[:nparts]
    else:
        assert nparts == xb.device_count()
        devices = xb.devices()
    device_assignment = np.array([[d.id for d in devices]])
    device_assignment = np.reshape(device_assignment, (-1, nparts))
    # device_assignment = None  # TODO(skye): replace with default device assignment?

    compiled = dispatch.backend_compile(
        xb.get_backend(), built,
        xb.get_compile_options(nrep, nparts, device_assignment))

    input_specs = [
        pxla.partitioned_sharding_spec(local_nparts, parts, aval)
        for parts, aval in zip(local_in_parts, abstract_args)
    ]
    input_indices = [
        pxla.spec_to_indices(aval.shape, spec) if spec is not None else None
        for aval, spec in zip(abstract_args, input_specs)
    ]

    handle_args = partial(pxla.shard_args, compiled.local_devices(),
                          input_indices)
    handle_outs = _avals_to_results_handler(
        nrep,
        local_nparts,  # type: ignore
        local_out_parts,
        local_out_avals)
    return partial(_execute_spatially_partitioned, compiled, handle_args,
                   handle_outs)