Esempio n. 1
0
def main(unused_argv):
  # Hide the GPUs and TPUs from TF so it does not reserve memory on them for
  # LPIPS computation or dataset loading.
  tf.config.experimental.set_visible_devices([], "GPU")
  tf.config.experimental.set_visible_devices([], "TPU")

  rng = random.PRNGKey(20200823)

  if FLAGS.config is not None:
    utils.update_flags(FLAGS)
  if FLAGS.train_dir is None:
    raise ValueError("train_dir must be set. None set now.")
  if FLAGS.data_dir is None:
    raise ValueError("data_dir must be set. None set now.")

  dataset = datasets.get_dataset("test", FLAGS)
  rng, key = random.split(rng)
  model, init_variables = models.get_model(key, dataset.peek(), FLAGS)
  optimizer = flax.optim.Adam(FLAGS.lr_init).create(init_variables)
  state = utils.TrainState(optimizer=optimizer)
  del optimizer, init_variables

  lpips_model = tf_hub.load(LPIPS_TFHUB_PATH)

  # Rendering is forced to be deterministic even if training was randomized, as
  # this eliminates "speckle" artifacts.
  def render_fn(variables, key_0, key_1, rays):
    return jax.lax.all_gather(
        model.apply(variables, key_0, key_1, rays, False), axis_name="batch")

  # pmap over only the data input.
  render_pfn = jax.pmap(
      render_fn,
      in_axes=(None, None, None, 0),
      donate_argnums=3,
      axis_name="batch",
  )

  # Compiling to the CPU because it's faster and more accurate.
  ssim_fn = jax.jit(
      functools.partial(utils.compute_ssim, max_val=1.), backend="cpu")

  last_step = 0
  out_dir = path.join(FLAGS.train_dir,
                      "path_renders" if FLAGS.render_path else "test_preds")
  if not FLAGS.eval_once:
    summary_writer = tensorboard.SummaryWriter(
        path.join(FLAGS.train_dir, "eval"))
  while True:
    state = checkpoints.restore_checkpoint(FLAGS.train_dir, state)
    step = int(state.optimizer.state.step)
    if step <= last_step:
      continue
    if FLAGS.save_output and (not utils.isdir(out_dir)):
      utils.makedirs(out_dir)
    psnr_values = []
    ssim_values = []
    lpips_values = []
    if not FLAGS.eval_once:
      showcase_index = np.random.randint(0, dataset.size)
    for idx in range(dataset.size):
      print(f"Evaluating {idx+1}/{dataset.size}")
      batch = next(dataset)
      pred_color, pred_disp, pred_acc = utils.render_image(
          functools.partial(render_pfn, state.optimizer.target),
          batch["rays"],
          rng,
          FLAGS.dataset == "llff",
          chunk=FLAGS.chunk)
      if jax.host_id() != 0:  # Only record via host 0.
        continue
      if not FLAGS.eval_once and idx == showcase_index:
        showcase_color = pred_color
        showcase_disp = pred_disp
        showcase_acc = pred_acc
        if not FLAGS.render_path:
          showcase_gt = batch["pixels"]
      if not FLAGS.render_path:
        psnr = utils.compute_psnr(((pred_color - batch["pixels"])**2).mean())
        ssim = ssim_fn(pred_color, batch["pixels"])
        lpips = compute_lpips(pred_color, batch["pixels"], lpips_model)
        print(f"PSNR = {psnr:.4f}, SSIM = {ssim:.4f}")
        psnr_values.append(float(psnr))
        ssim_values.append(float(ssim))
        lpips_values.append(float(lpips))
      if FLAGS.save_output:
        utils.save_img(pred_color, path.join(out_dir, "{:03d}.png".format(idx)))
        utils.save_img(pred_disp[Ellipsis, 0],
                       path.join(out_dir, "disp_{:03d}.png".format(idx)))
    if (not FLAGS.eval_once) and (jax.host_id() == 0):
      summary_writer.image("pred_color", showcase_color, step)
      summary_writer.image("pred_disp", showcase_disp, step)
      summary_writer.image("pred_acc", showcase_acc, step)
      if not FLAGS.render_path:
        summary_writer.scalar("psnr", np.mean(np.array(psnr_values)), step)
        summary_writer.scalar("ssim", np.mean(np.array(ssim_values)), step)
        summary_writer.scalar("lpips", np.mean(np.array(lpips_values)), step)
        summary_writer.image("target", showcase_gt, step)
    if FLAGS.save_output and (not FLAGS.render_path) and (jax.host_id() == 0):
      with utils.open_file(path.join(out_dir, f"psnrs_{step}.txt"), "w") as f:
        f.write(" ".join([str(v) for v in psnr_values]))
      with utils.open_file(path.join(out_dir, f"ssims_{step}.txt"), "w") as f:
        f.write(" ".join([str(v) for v in ssim_values]))
      with utils.open_file(path.join(out_dir, f"lpips_{step}.txt"), "w") as f:
        f.write(" ".join([str(v) for v in lpips_values]))
      with utils.open_file(path.join(out_dir, "psnr.txt"), "w") as f:
        f.write("{}".format(np.mean(np.array(psnr_values))))
      with utils.open_file(path.join(out_dir, "ssim.txt"), "w") as f:
        f.write("{}".format(np.mean(np.array(ssim_values))))
      with utils.open_file(path.join(out_dir, "lpips.txt"), "w") as f:
        f.write("{}".format(np.mean(np.array(lpips_values))))
    if FLAGS.eval_once:
      break
    if int(step) >= FLAGS.max_steps:
      break
    last_step = step
Esempio n. 2
0
def main(unused_argv):
    rng = random.PRNGKey(20200823)

    if FLAGS.config is not None:
        utils.update_flags(FLAGS)
    if FLAGS.train_dir is None:
        raise ValueError("train_dir must be set. None set now.")
    if FLAGS.data_dir is None:
        raise ValueError("data_dir must be set. None set now.")

    dataset = datasets.get_dataset("test", FLAGS)
    rng, key = random.split(rng)
    model, init_variables = models.get_model(key, dataset.peek(), FLAGS)
    optimizer = flax.optim.Adam(FLAGS.lr_init).create(init_variables)
    state = utils.TrainState(optimizer=optimizer)
    del optimizer, init_variables

    # Rendering is forced to be deterministic even if training was randomized, as
    # this eliminates "speckle" artifacts.
    def render_fn(variables, key_0, key_1, rays):
        return jax.lax.all_gather(model.apply(variables, key_0, key_1, *rays,
                                              False),
                                  axis_name="batch")

    # pmap over only the data input.
    render_pfn = jax.pmap(
        render_fn,
        in_axes=(None, None, None, 0),
        donate_argnums=3,
        axis_name="batch",
    )

    last_step = 0
    out_dir = path.join(FLAGS.train_dir,
                        "path_renders" if FLAGS.render_path else "test_preds")
    if not FLAGS.eval_once:
        summary_writer = tensorboard.SummaryWriter(
            path.join(FLAGS.train_dir, "eval"))
    while True:
        state = checkpoints.restore_checkpoint(FLAGS.train_dir, state)
        step = int(state.optimizer.state.step)
        if step <= last_step:
            continue
        if FLAGS.save_output and (not utils.isdir(out_dir)):
            utils.makedirs(out_dir)
        psnrs = []
        if not FLAGS.eval_once:
            showcase_index = np.random.randint(0, dataset.size)
        for idx in range(dataset.size):
            print(f"Evaluating {idx+1}/{dataset.size}")
            batch = next(dataset)
            pred_color, pred_disp, pred_acc = utils.render_image(
                functools.partial(render_pfn, state.optimizer.target),
                batch["rays"],
                rng,
                FLAGS.dataset == "llff",
                chunk=FLAGS.chunk)
            if jax.host_id() != 0:  # Only record via host 0.
                continue
            if not FLAGS.eval_once and idx == showcase_index:
                showcase_color = pred_color
                showcase_disp = pred_disp
                showcase_acc = pred_acc
                if not FLAGS.render_path:
                    showcase_gt = batch["pixels"]
            if not FLAGS.render_path:
                psnr = utils.compute_psnr(
                    ((pred_color - batch["pixels"])**2).mean())
                print(f"  PSNR = {psnr:.4f}")
                psnrs.append(float(psnr))
            if FLAGS.save_output:
                utils.save_img(pred_color,
                               path.join(out_dir, "{:03d}.png".format(idx)))
                utils.save_img(
                    pred_disp[Ellipsis, 0],
                    path.join(out_dir, "disp_{:03d}.png".format(idx)))
        if (not FLAGS.eval_once) and (jax.host_id() == 0):
            summary_writer.image("pred_color", showcase_color, step)
            summary_writer.image("pred_disp", showcase_disp, step)
            summary_writer.image("pred_acc", showcase_acc, step)
            if not FLAGS.render_path:
                summary_writer.scalar("psnr", np.mean(np.array(psnrs)), step)
                summary_writer.image("target", showcase_gt, step)
        if FLAGS.save_output and (not FLAGS.render_path) and (jax.host_id()
                                                              == 0):
            with utils.open_file(path.join(out_dir, "psnr.txt"), "w") as pout:
                pout.write("{}".format(np.mean(np.array(psnrs))))
        if FLAGS.eval_once:
            break
        if int(step) >= FLAGS.max_steps:
            break
        last_step = step