Esempio n. 1
0
    def _objective(trial):

        value = FlowOptimizer._suggest(
            IntegerParameter(0, 3, 1, jaml_variable='IntegerParameter'), trial)
        assert 0 <= value
        assert value <= 3
        value = FlowOptimizer._suggest(
            UniformParameter(0, 3, jaml_variable='UniformParameter'), trial)
        assert 0 <= value
        assert value <= 3
        value = FlowOptimizer._suggest(
            LogUniformParameter(1, 3, jaml_variable='LogUniformParameter'),
            trial)
        assert 1 <= value
        assert value <= 3
        value = FlowOptimizer._suggest(
            CategoricalParameter([0, 1.5, 2, 3],
                                 jaml_variable='CategoricalParameter'), trial)
        assert 0 <= value
        assert value <= 3
        value = FlowOptimizer._suggest(
            DiscreteUniformParameter(0,
                                     3,
                                     1,
                                     jaml_variable='DiscreteUniformParameter'),
            trial)
        assert 0 <= value
        assert value <= 3
Esempio n. 2
0
def test_optimizer_multi_flow(tmpdir, config):
    multi_flow_runner = MultiFlowRunner(
        [
            SingleFlowRunner(
                flow_yaml=os.path.join(cur_dir, 'flow.yml'),
                documents=document_generator(10),
                request_size=1,
                execution_endpoint='index',
            ),
            SingleFlowRunner(
                flow_yaml=os.path.join(cur_dir, 'flow.yml'),
                documents=document_generator(10),
                request_size=1,
                execution_endpoint='search',
            ),
        ]
    )
    opt = FlowOptimizer(
        flow_runner=multi_flow_runner,
        parameter_yaml=os.path.join(cur_dir, 'parameter.yml'),
        evaluation_callback=MeanEvaluationCallback(),
        workspace_base_dir=str(tmpdir),
        n_trials=5,
    )
    result = opt.optimize_flow()
    validate_result(result, tmpdir)
Esempio n. 3
0
def test_optimizer_single_flow(tmpdir, config, sampler):
    eval_flow_runner = SingleFlowRunner(
        flow_yaml=os.path.join(cur_dir, 'flow.yml'),
        documents=document_generator(10),
        request_size=1,
        execution_endpoint='search',
    )
    grid_sampler_search_space = {
        'JINA_DUMMYCRAFTER_PARAM1': [0, 1],
        'JINA_DUMMYCRAFTER_PARAM2': [0, 1, 2],
        'JINA_DUMMYCRAFTER_PARAM3': [1],
    }
    opt = FlowOptimizer(
        flow_runner=eval_flow_runner,
        parameter_yaml=os.path.join(cur_dir, 'parameter.yml'),
        evaluation_callback=EvaluationCallback(),
        workspace_base_dir=str(tmpdir),
        n_trials=5,
        sampler=sampler,
    )
    if sampler == 'GridSampler':
        result = opt.optimize_flow(search_space=grid_sampler_search_space)
    else:
        result = opt.optimize_flow()
    validate_result(result, tmpdir)
Esempio n. 4
0
def test_optimizer_search_space(tmpdir, config):
    eval_flow_runner = SingleFlowRunner(
        flow_yaml=os.path.join(cur_dir, "flow.yml"),
        documents=document_generator(10),
        request_size=1,
        execution_endpoint="search",
    )
    _opt_kwargs = dict(
        flow_runner=eval_flow_runner,
        evaluation_callback=EvaluationCallback(),
        workspace_base_dir=str(tmpdir),
        n_trials=5,
        sampler="GridSampler",
    )

    # check the search space construction with valid parameters
    opt = FlowOptimizer(
        **_opt_kwargs,
        parameter_yaml=os.path.join(cur_dir, "parameters_search_space.yml"),
    )
    assert "JINA_PARAM1" in opt._search_space
    assert opt._search_space["JINA_PARAM1"] == [0, 1, 2]
    assert "JINA_PARAM2" in opt._search_space
    assert opt._search_space["JINA_PARAM2"] == ["foo", "bar"]
    assert "JINA_PARAM3" in opt._search_space
    assert opt._search_space["JINA_PARAM3"] == [1.0, 1.5, 2.0]
    assert "JINA_PARAM4" in opt._search_space
    assert opt._search_space["JINA_PARAM4"] == ["spam", "ham"]
    assert "JINA_PARAM4_SPAM_PARAM5" in opt._search_space
    assert opt._search_space["JINA_PARAM4_SPAM_PARAM5"] == [0, 1, 2]
    assert "JINA_PARAM4_HAM_PARAM56" in opt._search_space
    assert opt._search_space["JINA_PARAM4_HAM_PARAM56"] == [0, 1, 2]

    # check the search space construction with invalid uniform parameter
    _raised = False
    try:
        _ = FlowOptimizer(
            **_opt_kwargs,
            parameter_yaml=os.path.join(cur_dir, "parameters_search_space_uniform.yml"),
        )
    except NotImplementedError:
        _raised = True
    assert _raised

    # check the search space construction with invalid loguniform parameter
    _raised = False
    try:
        _ = FlowOptimizer(
            **_opt_kwargs,
            parameter_yaml=os.path.join(
                cur_dir, "parameters_search_space_loguniform.yml"
            ),
        )
    except NotImplementedError:
        _raised = True
    assert _raised
Esempio n. 5
0
def test_optimizer(tmpdir, config):
    eval_flow_runner = SingleFlowRunner(
        flow_yaml='tests/integration/optimizers/flow.yml',
        documents=document_generator(10),
        request_size=1,
        execution_method='search',
    )
    opt = FlowOptimizer(
        flow_runner=eval_flow_runner,
        parameter_yaml='tests/integration/optimizers/parameter.yml',
        evaluation_callback=MeanEvaluationCallback(),
        workspace_base_dir=str(tmpdir),
        n_trials=5,
    )
    result = opt.optimize_flow()
    validate_result(result, tmpdir)
Esempio n. 6
0
def test_optimizer_single_flow(tmpdir, config, sampler):
    eval_flow_runner = SingleFlowRunner(
        flow_yaml=os.path.join(cur_dir, 'flow.yml'),
        documents=document_generator(10),
        request_size=1,
        execution_endpoint='search',
    )
    opt = FlowOptimizer(
        flow_runner=eval_flow_runner,
        parameter_yaml=os.path.join(cur_dir, 'parameter.yml'),
        evaluation_callback=EvaluationCallback(),
        workspace_base_dir=str(tmpdir),
        n_trials=5,
        sampler=sampler,
    )
    result = opt.optimize_flow()
    validate_result(result, tmpdir)
def test_optimizer_single_flow_option2(tmpdir, config):
    eval_flow_runner = SingleFlowRunner(
        flow_yaml=os.path.join(cur_dir, 'flow_pod_choice.yml'),
        documents=document_generator_option2(10),
        request_size=1,
        execution_endpoint='search',
    )
    opt = FlowOptimizer(
        flow_runner=eval_flow_runner,
        parameter_yaml=os.path.join(cur_dir, 'parameter_pod_choice.yml'),
        evaluation_callback=EvaluationCallback(),
        workspace_base_dir=str(tmpdir),
        n_trials=20,
    )
    result = opt.optimize_flow()
    assert (
        result.best_parameters['JINA_DUMMYCRAFTER_CHOICE'] == 'pods/craft_option2.yml'
    )
    assert result.best_parameters['JINA_DUMMYCRAFTER_PARAM4'] == 0
    assert result.best_parameters['JINA_DUMMYCRAFTER_PARAM5'] == 1
    assert result.best_parameters['JINA_DUMMYCRAFTER_PARAM6'] == 1
Esempio n. 8
0
def test_optimizer(tmpdir):
    eval_flow_runner = SingleFlowRunner(
        flow_yaml='tests/integration/optimizers/flow.yml',
        documents=document_generator(10),
        request_size=1,
        task='search',
    )

    opt = FlowOptimizer(
        flow_runner=eval_flow_runner,
        parameter_yaml='tests/integration/optimizers/parameter.yml',
        evaluation_callback=MeanEvaluationCallback(),
        workspace_base_dir=str(tmpdir),
        n_trials=5,
    )

    result = opt.optimize_flow()
    result_path = str(tmpdir) + '/results/best_parameters.yml'
    result.save_parameters(result_path)
    parameters = result.best_parameters

    assert parameters == BEST_PARAMETERS
    assert yaml.load(open(result_path)) == BEST_PARAMETERS