Esempio n. 1
0
def encode(matched, priors, use_yolo_regressors: bool = False):
    """
    Encode bboxes matched with each prior into the format
    produced by the network. See decode for more details on
    this format. Note that encode(decode(x, p), p) = x.
    
    Args:
        - matched: A tensor of bboxes in point form with shape [num_priors, 4]
        - priors:  The tensor of all priors with shape [num_priors, 4]
    Return: A tensor with encoded relative coordinates in the format
            outputted by the network (see decode). Size: [num_priors, 4]
    """
    # print(use_yolo_regressors)
    if use_yolo_regressors:
        # Exactly the reverse of what we did in decode
        # In fact encode(decode(x, p), p) should be x
        boxes = center_size(matched)

        loc = jt.contrib.concat(
            (boxes[:, :2] - priors[:, :2], jt.log(
                boxes[:, 2:] / priors[:, 2:])), 1)
    else:
        variances = [0.1, 0.2]

        # dist b/t match center and prior's center
        g_cxcy = (matched[:, :2] + matched[:, 2:]) / 2 - priors[:, :2]
        # encode variance
        g_cxcy /= (variances[0] * priors[:, 2:])
        # match wh / prior wh
        g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:]
        g_wh = jt.log(g_wh) / variances[1]
        # return target for smooth_l1_loss
        loc = jt.contrib.concat([g_cxcy, g_wh], 1)  # [num_priors,4]

    return loc
    def execute(self, inputs, targets, mask=None, act=False):
        losses = []
        for id in range(len(inputs)):
            if mask is not None:
                input_flatten, target_flatten = self.flatten(
                    inputs[id], targets[id], mask[id])
            else:
                input_flatten, target_flatten = self.flatten(
                    inputs[id], targets[id])
            if act:
                MIN = 1e-9
                input_flatten = jt.clamp(input_flatten,
                                         min_v=MIN,
                                         max_v=1 - MIN)
                input_flatten = jt.log(input_flatten) - jt.log(1 -
                                                               input_flatten)
            losses.append(self.lovasz_hinge_flat(input_flatten,
                                                 target_flatten))
        losses = jt.stack(losses)
        if self.reduction == "mean":
            losses = losses.mean()
        elif self.reduction == "sum":
            losses = losses.sum()

        return losses
    def encode(self, reference_boxes, proposals):
        """
        Encode a set of proposals with respect to some
        reference boxes

        Arguments:
            reference_boxes (Tensor): reference boxes
            proposals (Tensor): boxes to be encoded
        """

        TO_REMOVE = 1  # TODO remove
        ex_widths = proposals[:, 2] - proposals[:, 0] + TO_REMOVE
        ex_heights = proposals[:, 3] - proposals[:, 1] + TO_REMOVE
        ex_ctr_x = proposals[:, 0] + 0.5 * ex_widths
        ex_ctr_y = proposals[:, 1] + 0.5 * ex_heights

        gt_widths = reference_boxes[:, 2] - reference_boxes[:, 0] + TO_REMOVE
        gt_heights = reference_boxes[:, 3] - reference_boxes[:, 1] + TO_REMOVE
        gt_ctr_x = reference_boxes[:, 0] + 0.5 * gt_widths
        gt_ctr_y = reference_boxes[:, 1] + 0.5 * gt_heights

        wx, wy, ww, wh = self.weights
        targets_dx = wx * (gt_ctr_x - ex_ctr_x) / ex_widths
        targets_dy = wy * (gt_ctr_y - ex_ctr_y) / ex_heights
        targets_dw = ww * jt.log(gt_widths / ex_widths)
        targets_dh = wh * jt.log(gt_heights / ex_heights)

        targets = jt.stack((targets_dx, targets_dy, targets_dw, targets_dh), dim=1)
        return targets
Esempio n. 4
0
File: nn.py Progetto: shcig/jittor
def bce_loss(output, target, size_average=True):
    if size_average:
        return -(target * jt.log(jt.maximum(output, 1e-20)) +
                 (1 - target) * jt.log(jt.maximum(1 - output, 1e-20))).mean()
    else:
        return -(target * jt.log(jt.maximum(output, 1e-20)) +
                 (1 - target) * jt.log(jt.maximum(1 - output, 1e-20))).sum()
Esempio n. 5
0
def bce_loss(output, target, weight=None, size_average=True):
    loss = - (target * jt.log(jt.maximum(output, 1e-20)) + (1 - target) * jt.log(jt.maximum(1 - output, 1e-20)))

    if weight is not None:
        loss *= weight
    
    if size_average:
        return loss.mean()
    else:
        return loss.sum()
def sigmoid_focal_loss(logits, targets, gamma, alpha):
    num_classes = logits.shape[1]
    dtype = targets.dtype
    class_range = jt.arange(1, num_classes + 1, dtype=dtype).unsqueeze(0)

    t = targets.unsqueeze(1)
    p = logits.sigmoid()
    term1 = (1 - p)**gamma * jt.log(p)
    term2 = p**gamma * jt.log(1 - p)
    return -(t == class_range).float() * term1 * alpha - (
        (t != class_range) * (t >= 0)).float() * term2 * (1 - alpha)
    def execute(self, x):
        batch_size = x.shape[0]
        x = nn.relu(self.fc1(x))
        x = nn.relu(self.fc2(x))

        # decoder follows NMR
        centroid = self.fc_centroid(x) * self.centroid_scale

        bias = self.fc_bias(x) * self.bias_scale
        bias = bias.view(-1, self.nv, 3)

        base = self.vertices_base * self.obj_scale

        sign = nn.sign(base)
        base = base.abs()
        base = jt.log(base / (1 - base))

        centroid = jt.tanh(centroid[:, None, :])
        scale_pos = 1 - centroid
        scale_neg = centroid + 1

        vertices = (base + bias).sigmoid() * sign
        vertices = nn.relu(vertices) * scale_pos - nn.relu(
            -vertices) * scale_neg
        vertices = vertices + centroid
        vertices = vertices * 0.5
        faces = self.faces[None, :, :].repeat(batch_size, 1, 1)

        return vertices, faces
Esempio n. 8
0
 def __init__(self, p=None, logits=None):
     assert (p is not None) or (logits is not None)
     assert 0 < p and p < 1
     if p is None:
         self.prob = jt.sigmoid(logits)
         self.logits = logits
     elif logits is None:
         self.prob = p
         self.logits = -jt.log(1. / p - 1)
Esempio n. 9
0
def log_sum_exp(x):
    """Utility function for computing log_sum_exp while determining
    This will be used to determine unaveraged confidence loss across
    all examples in a batch.
    Args:
        x (Variable(tensor)): conf_preds from conf layers
    """
    x_max = x.data.max()
    return jt.log(jt.sum(jt.exp(x - x_max), 1)) + x_max
Esempio n. 10
0
    def execute(self, batch_size):
        base = jt.log(self.vertices.abs() / (1 - self.vertices.abs()))
        centroid = jt.tanh(self.center)
        vertices = (base + self.displace).sigmoid() * nn.sign(self.vertices)
        vertices = nn.relu(vertices) * (1 - centroid) - nn.relu(-vertices) * (centroid + 1)
        vertices = vertices + centroid

        # apply Laplacian and flatten geometry constraints
        laplacian_loss = self.laplacian_loss(vertices).mean()
        flatten_loss = self.flatten_loss(vertices).mean()
        return jr.Mesh(vertices.repeat(batch_size, 1, 1), 
                       self.faces.repeat(batch_size, 1, 1), dr_type='n3mr'), laplacian_loss, flatten_loss
Esempio n. 11
0
def kl_divergence(cur_dist, old_dist):
    assert isinstance(cur_dist, type(old_dist))
    if isinstance(cur_dist, Normal):
        vr = (cur_dist.sigma / old_dist.sigma)**2
        t1 = ((cur_dist.mu - old_dist.mu) / old_dist.sigma)**2
        return 0.5 * (vr + t1 - 1 - jt.log(vr))
    if isinstance(cur_dist, Categorical) or isinstance(cur_dist,
                                                       OneHotCategorical):
        t = cur_dist.probs * (cur_dist.logits - old_dist.logits)
        t[jt.array((old_dist.probs == 0))] = math.inf
        t[jt.array((cur_dist.probs == 0))] = 0
        return t.sum(-1)
    if isinstance(cur_dist, Uniform):
        res = jt.log(
            (old_dist.high - old_dist.low) / (cur_dist.high - cur_dist.low))
        if old_dist.low > cur_dist.low or old_dist.high < cur_dist.high:
            res = math.inf
        return res
    if isinstance(cur_dist, Geometric):
        return -cur_dist.entropy() - jt.log(
            -old_dist.prob + 1) / cur_dist.prob - old_dist.logits
Esempio n. 12
0
def kl_divergence(cur_dist, old_dist):
    assert isinstance(cur_dist, type(old_dist))
    if isinstance(cur_dist, Normal):
        vr = (cur_dist.sigma / old_dist.sigma)**2
        t1 = ((cur_dist.mu - old_dist.mu) / old_dist.sigma)**2
        return 0.5 * (vr + t1 - 1 - jt.log(vr))
    if isinstance(cur_dist, Categorical) or isinstance(cur_dist,
                                                       OneHotCategorical):  # ?
        t = cur_dist.probs * (cur_dist.logits - old_dist.logits)
        t[jt.array((old_dist.probs == 0))] = math.inf
        t[jt.array((cur_dist.probs == 0))] = 0
        return t.sum(-1)
Esempio n. 13
0
 def __init__(self, probs=None, logits=None):
     assert not (probs is None and logits is None)
     if probs is None:
         # cannot align to pytorch
         probs = jt.sigmoid(logits)
     elif logits is None:
         logits = jt.log(probs)
     with jt.no_grad():
         self.probs = probs / probs.sum(-1, True)
         self.logits = logits
         self.cum_probs = simple_presum(probs)
         self.cum_probs_l = self.cum_probs[..., :-1]
         self.cum_probs_r = self.cum_probs[..., 1:]
Esempio n. 14
0
def bbox2loc(src_bbox,dst_bbox):        
    width = src_bbox[:, 2:3] - src_bbox[:, 0:1]
    height = src_bbox[:, 3:4] - src_bbox[:, 1:2]
    center_x = src_bbox[:, 0:1] + 0.5 * width
    center_y = src_bbox[:, 1:2] + 0.5 * height

    base_width = dst_bbox[:, 2:3] - dst_bbox[:, 0:1]
    base_height = dst_bbox[:, 3:4] - dst_bbox[:, 1:2]
    base_center_x = dst_bbox[:, 0:1] + 0.5 * base_width
    base_center_y = dst_bbox[:, 1:2] + 0.5 * base_height

    eps = 1e-5
    height = jt.maximum(height, eps)
    width = jt.maximum(width, eps)

    dy = (base_center_y - center_y) / height
    dx = (base_center_x - center_x) / width

    dw = jt.log(base_width / width)
    dh = jt.log(base_height / height)
        
    loc = jt.contrib.concat([dx,dy,dw,dh],dim=1)
    return loc
Esempio n. 15
0
    def execute(self, pred, target, weight=None):
        pred_left = pred[:, 0]
        pred_top = pred[:, 1]
        pred_right = pred[:, 2]
        pred_bottom = pred[:, 3]

        target_left = target[:, 0]
        target_top = target[:, 1]
        target_right = target[:, 2]
        target_bottom = target[:, 3]

        target_area = (target_left + target_right) * \
                      (target_top + target_bottom)
        pred_area = (pred_left + pred_right) * \
                    (pred_top + pred_bottom)

        w_intersect = jt.minimum(pred_left, target_left) + jt.minimum(
            pred_right, target_right)
        g_w_intersect = jt.maximum(pred_left, target_left) + jt.maximum(
            pred_right, target_right)
        h_intersect = jt.minimum(pred_bottom, target_bottom) + jt.minimum(
            pred_top, target_top)
        g_h_intersect = jt.maximum(pred_bottom, target_bottom) + jt.maximum(
            pred_top, target_top)
        ac_uion = g_w_intersect * g_h_intersect + 1e-7
        area_intersect = w_intersect * h_intersect
        area_union = target_area + pred_area - area_intersect
        ious = (area_intersect + 1.0) / (area_union + 1.0)
        gious = ious - (ac_uion - area_union) / ac_uion
        if self.loc_loss_type == 'iou':
            losses = -jt.log(ious)
        elif self.loc_loss_type == 'linear_iou':
            losses = 1 - ious
        elif self.loc_loss_type == 'giou':
            losses = 1 - gious
        else:
            raise NotImplementedError

        if weight is not None and weight.sum() > 0:
            return (losses * weight).sum() / weight.sum()
        else:
            assert losses.numel() != 0
            return losses.mean()
Esempio n. 16
0
def soft_cross_entropy_loss(output, target, smoothing=True):
    ''' Calculate cross entropy loss, apply label smoothing if needed. '''

    target = target.view(-1)
    softmax = nn.Softmax(dim=1)
    if smoothing:
        eps = 0.2
        b, n_class = output.shape

        one_hot = jt.zeros(output.shape)
        for i in range(b):
            one_hot[i, target[i].data] = 1

        one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1)
        # print (one_hot[0].data)
        log_prb = jt.log(softmax(output))
        loss = -(one_hot * log_prb).sum(dim=1).mean()
    else:
        loss = nn.cross_entropy_loss(output, target)

    return loss
Esempio n. 17
0
def log2(x):
    return jt.log(x)/math.log(2.0)
Esempio n. 18
0
def log_sigmoid(x):
    return jt.log(jt.sigmoid(x))
Esempio n. 19
0
def log_softmax(x, dim=None):
    x = softmax(x, dim=dim)
    return jt.log(x)
Esempio n. 20
0
 def execute(self, x):
     return 1 / self.beta * jt.log(1 + (self.beta * x).exp())
Esempio n. 21
0
def softplus(x, beta=1, threshold=20):
    return 1 / beta * jt.log(1 + (beta * x).exp())
Esempio n. 22
0
 def __init__(self, loc, scale):
     self.loc = loc
     self.scale = scale
     self.log_scale = jt.log(self.scale)
Esempio n. 23
0
 def entropy(self):
     return -jt.sum(jt.mean(self.probs) * jt.log(self.probs))
Esempio n. 24
0
 def log_prob(self, x):
     return jt.log(self.probs)[0,x]
Esempio n. 25
0
 def logits(self):
     if self._logits is None:
         return jt.log(jt.clamp(self.probs, min_v=eps, max_v=1-eps))
     else:
         return self._logits
Esempio n. 26
0
import jittor as jt
from jittor import nn
import numpy as np

# Misc
img2mse = lambda x, y: jt.mean((x - y)**2)
mse2psnr = lambda x: -10. * jt.log(x) / jt.log(jt.array(np.array([10.])))
to8b = lambda x: (255 * np.clip(x, 0, 1)).astype(np.uint8)


# Positional encoding (section 5.1)
class Embedder:
    def __init__(self, **kwargs):
        self.kwargs = kwargs
        self.create_embedding_fn()

    def create_embedding_fn(self):
        embed_fns = []
        d = self.kwargs['input_dims']
        out_dim = 0
        if self.kwargs['include_input']:
            embed_fns.append(lambda x: x)
            out_dim += d

        max_freq = self.kwargs['max_freq_log2']
        N_freqs = self.kwargs['num_freqs']

        if self.kwargs['log_sampling']:
            freq_bands = 2.**jt.linspace(0., max_freq, steps=N_freqs)
        else:
            freq_bands = jt.linspace(2.**0., 2.**max_freq, steps=N_freqs)
Esempio n. 27
0
File: nn.py Progetto: JoelBNU/jittor
def bce_loss(output, target):
    return -(target * jt.log(jt.maximum(output, 1e-20)) +
             (1 - target) * jt.log(jt.maximum(1 - output, 1e-20))).mean()
Esempio n. 28
0
def prod(x,dim=0):
    x = jt.log(x)
    x = x.sum(dim=dim)
    return jt.exp(x)
Esempio n. 29
0
def cumprod(x,dim=0):
    x = jt.log(x)
    x = cumsum(x,dim=dim)
    return jt.exp(x)
Esempio n. 30
0
 def execute(self, input, target):
     bs_idx = jt.array(range(input.shape[0]))
     ret = (-jt.log(nn.softmax(input, dim=1)))[bs_idx, target]
     if self.reduction != None:
         ret = jt.mean(ret) if self.reduction == 'mean' else jt.sum(ret)
     return ret