Esempio n. 1
0
        neighbourhood_selection_probability=0.9,
        max_number_of_replaced_solutions=2,
        weight_files_path='../../resources/MOEAD_weights',
        termination_criterion=StoppingByEvaluations(max=max_evaluations)
    )

    algorithm.observable.register(observer=ProgressBarObserver(max=max_evaluations))
    algorithm.observable.register(
        observer=VisualizerObserver(reference_front=problem.reference_front, display_frequency=1000))

    algorithm.run()
    front = algorithm.get_result()

    # Plot front
    plot_front = Plot(plot_title='Pareto front approximation', reference_front=problem.reference_front,
                      axis_labels=problem.obj_labels)
    plot_front.plot(front, label=algorithm.label, filename=algorithm.get_name())

    # Plot interactive front
    plot_front = InteractivePlot(plot_title='Pareto front approximation', reference_front=problem.reference_front,
                                 axis_labels=problem.obj_labels)
    plot_front.plot(front, label=algorithm.label, filename=algorithm.get_name())

    # Save results to file
    print_function_values_to_file(front, 'FUN.' + algorithm.label)
    print_variables_to_file(front, 'VAR.' + algorithm.label)

    print('Algorithm (continuous problem): ' + algorithm.get_name())
    print('Problem: ' + problem.get_name())
    print('Computing time: ' + str(algorithm.total_computing_time))
Esempio n. 2
0
            dimension=problem.number_of_objectives),
        neighbor_size=20,
        neighbourhood_selection_probability=0.9,
        max_number_of_replaced_solutions=2,
        weight_files_path='../../resources/MOEAD_weights',
        termination_criterion=StoppingByEvaluations(max=max_evaluations))

    algorithm.observable.register(observer=ProgressBarObserver(
        max=max_evaluations))
    algorithm.observable.register(observer=VisualizerObserver(
        reference_front=problem.reference_front, display_frequency=1000))

    algorithm.run()
    front = algorithm.get_result()

    label = algorithm.get_name() + "." + problem.get_name()
    algorithm_name = label

    # Plot front
    plot_front = Plot(plot_title='Pareto front approximation',
                      axis_labels=problem.obj_labels)
    plot_front.plot(front, label=label, filename=algorithm_name)

    # Plot interactive front
    plot_front = InteractivePlot(plot_title='Pareto front approximation',
                                 axis_labels=problem.obj_labels)
    plot_front.plot(front, label=label, filename=algorithm_name)

    # Save results to file
    print_function_values_to_file(front, 'FUN.' + label)
    print_variables_to_file(front, 'VAR.' + label)
Esempio n. 3
0
    algorithm.observable.register(observer=ProgressBarObserver(
        max=max_evaluations))
    algorithm.observable.register(observer=VisualizerObserver(
        reference_front=problem.reference_front, display_frequency=1000))

    algorithm.run()
    front = algorithm.get_result()

    # Plot front
    plot_front = Plot(plot_title='Pareto front approximation',
                      reference_front=problem.reference_front,
                      axis_labels=problem.obj_labels)
    plot_front.plot(front,
                    label=algorithm.label,
                    filename=algorithm.get_name())

    # Plot interactive front
    plot_front = InteractivePlot(plot_title='Pareto front approximation',
                                 reference_front=problem.reference_front,
                                 axis_labels=problem.obj_labels)
    plot_front.plot(front,
                    label=algorithm.label,
                    filename=algorithm.get_name())

    # Save results to file
    print_function_values_to_file(front, 'FUN.' + algorithm.label)
    print_variables_to_file(front, 'VAR.' + algorithm.label)

    print('Algorithm (continuous problem): ' + algorithm.get_name())
    print('Problem: ' + problem.get_name())