Esempio n. 1
0
 def test_SMPSO(self):
     SMPSO(problem=self.problem,
           swarm_size=self.population_size,
           mutation=self.mutation,
           leaders=CrowdingDistanceArchive(100),
           termination_criterion=StoppingByEvaluations(
               max_evaluations=1000)).run()
Esempio n. 2
0
    def test_should_SMPSO_work_when_solving_problem_ZDT1_with_standard_settings(self):
        problem = ZDT1()

        algorithm = SMPSO(
            problem=problem,
            swarm_size=100,
            mutation=PolynomialMutation(probability=1.0 / problem.number_of_variables, distribution_index=20),
            leaders=CrowdingDistanceArchive(100),
            termination_criterion=StoppingByEvaluations(max_evaluations=25000),
        )

        algorithm.run()
        front = algorithm.get_result()

        hv = HyperVolume(reference_point=[1, 1])
        value = hv.compute([front[i].objectives for i in range(len(front))])

        self.assertTrue(value >= 0.655)
Esempio n. 3
0
    def configurar_SMPSO(self):

        algorithm = SMPSO(
                problem=self.problema,
                swarm_size=self.maxima_poblacion,
                mutation=PolynomialMutation(probability=self.probabilidad, distribution_index=20),
                leaders=CrowdingDistanceArchive(100),
                termination_criterion=StoppingByEvaluations(max_evaluations=self.evaluaciones))
        return algorithm
Esempio n. 4
0
def configure_experiment(problems: dict, n_run: int):
    jobs = []
    max_evaluations = 25000

    for run in range(n_run):
        for problem_tag, problem in problems.items():
            jobs.append(
                Job(
                    algorithm=NSGAII(
                        problem=problem,
                        population_size=100,
                        offspring_population_size=100,
                        mutation=PolynomialMutation(
                            probability=1.0 / problem.number_of_variables,
                            distribution_index=20),
                        crossover=SBXCrossover(probability=1.0,
                                               distribution_index=20),
                        termination_criterion=StoppingByEvaluations(
                            max_evaluations=max_evaluations),
                    ),
                    algorithm_tag="NSGAII",
                    problem_tag=problem_tag,
                    run=run,
                ))
            jobs.append(
                Job(
                    algorithm=GDE3(
                        problem=problem,
                        population_size=100,
                        cr=0.5,
                        f=0.5,
                        termination_criterion=StoppingByEvaluations(
                            max_evaluations=max_evaluations),
                    ),
                    algorithm_tag="GDE3",
                    problem_tag=problem_tag,
                    run=run,
                ))
            jobs.append(
                Job(
                    algorithm=SMPSO(
                        problem=problem,
                        swarm_size=100,
                        mutation=PolynomialMutation(
                            probability=1.0 / problem.number_of_variables,
                            distribution_index=20),
                        leaders=CrowdingDistanceArchive(100),
                        termination_criterion=StoppingByEvaluations(
                            max_evaluations=max_evaluations),
                    ),
                    algorithm_tag="SMPSO",
                    problem_tag=problem_tag,
                    run=run,
                ))

    return jobs
Esempio n. 5
0
def main() -> None:
    problem = Kursawe()
    algorithm = SMPSO(problem=problem,
                      swarm_size=100,
                      max_evaluations=25000,
                      mutation=Polynomial(1.0 / problem.number_of_variables,
                                          distribution_index=20),
                      leaders=CrowdingDistanceArchive(100))

    algorithm.run()
    result = algorithm.get_result()

    SolutionListOutput[FloatSolution].print_function_values_to_file(
        "FUN." + problem.get_name(), result)

    logger.info("Algorithm (continuous problem): " + algorithm.get_name())
    logger.info("Problem: " + problem.get_name())
Esempio n. 6
0
    def test_should_constructor_create_a_valid_object(self):
        problem = self.__DummyFloatProblem()
        algorithm = SMPSO(problem=problem,
                          swarm_size=100,
                          max_evaluations=200,
                          mutation=Polynomial(probability=1.0 /
                                              problem.number_of_variables),
                          leaders=BoundedArchive[FloatSolution](100))

        self.assertEqual(1.5, algorithm.c1_min)
        self.assertEqual(2.5, algorithm.c1_max)
        self.assertEqual(1.5, algorithm.c2_min)
        self.assertEqual(2.5, algorithm.c2_max)
        self.assertEqual(0.1, algorithm.min_weight)
        self.assertEqual(0.1, algorithm.max_weight)
        self.assertEqual(-1.0, algorithm.change_velocity1)
        self.assertEqual(-1.0, algorithm.change_velocity2)
        self.assertEqual(200, algorithm.max_evaluations)
        self.assertEqual((100, 2), algorithm.speed.shape)

        numpy.testing.assert_array_almost_equal(numpy.array([2.0, 2.0]),
                                                algorithm.delta_max)
        numpy.testing.assert_array_almost_equal(algorithm.delta_max * -1.0,
                                                algorithm.delta_min)
from jmetal.lab.visualization import InteractivePlot, Plot
from jmetal.operator import PolynomialMutation
from jmetal.problem import DTLZ1
from jmetal.util.archive import CrowdingDistanceArchive
from jmetal.util.observer import ProgressBarObserver
from jmetal.util.solutions import print_function_values_to_file, print_variables_to_file
from jmetal.util.termination_criterion import StoppingByEvaluations

if __name__ == '__main__':
    problem = DTLZ1(number_of_objectives=5)

    max_evaluations = 25000
    algorithm = SMPSO(
        problem=problem,
        swarm_size=100,
        mutation=PolynomialMutation(probability=1.0 / problem.number_of_variables, distribution_index=20),
        leaders=CrowdingDistanceArchive(100),
        termination_criterion=StoppingByEvaluations(max=max_evaluations)
    )

    algorithm.observable.register(observer=ProgressBarObserver(max=max_evaluations))

    algorithm.run()
    front = algorithm.get_result()

    label = algorithm.get_name() + "." + problem.get_name()

    # Plot front
    plot_front = Plot(plot_title='Pareto front approximation', reference_front=problem.reference_front,
                      axis_labels=problem.obj_labels)
    plot_front.plot(front, label=algorithm.label, filename=algorithm.get_name())
    def f2(x: [float]):
        return (x[0] - 2) * (x[0] - 2)

    problem = OnTheFlyFloatProblem()
    problem \
        .set_name('Schaffer') \
        .add_variable(-10000.0, 10000.0) \
        .add_function(f1) \
        .add_function(f2)

    max_evaluations = 25000

    algorithm = SMPSO(problem=problem,
                      swarm_size=100,
                      mutation=PolynomialMutation(probability=1.0 /
                                                  problem.number_of_variables,
                                                  distribution_index=20),
                      leaders=CrowdingDistanceArchive(100),
                      termination_criterion=StoppingByEvaluations(
                          max_evaluations=max_evaluations))

    algorithm.run()
    front = algorithm.get_result()

    # Save results to file
    print_function_values_to_file(front, 'FUN.' + algorithm.label)
    print_variables_to_file(front, 'VAR.' + algorithm.label)

    print(f'Algorithm: ${algorithm.get_name()}')
    print(f'Problem: ${problem.get_name()}')
    print(f'Computing time: ${algorithm.total_computing_time}')
Esempio n. 9
0
    def configurar_algoritmo(self,
                             hora_show: datetime,
                             hora_minima: datetime = datetime.time(0, 0),
                             algoritmo: str = 'MOGA',
                             mutation_probability: float = 0.25,
                             max_evaluations: int = 500,
                             population: int = 100):
        hora_minima, hora_show = self.restricciones_hora(
            hora_minima, hora_show)
        if (hora_minima == 0):
            hora_minima = hora_show - 180
        restricciones_baja = list([hora_minima, -100, -100, 0, 0])
        restricciones_alta = list([hora_show, 0, 0, 100, 100])

        self.problem = HVAC(lower_bound=restricciones_baja,
                            upper_bound=restricciones_alta,
                            number_of_configurations=3)

        print("algoritmo: ", algoritmo)
        if algoritmo == 'MOGA':
            algorithm = MOGA(problem=self.problem,
                             population_size=population,
                             offspring_population_size=population,
                             mutation=IntegerPolynomialMutationD(
                                 probability=mutation_probability,
                                 distribution_index=20),
                             crossover=SBXCrossoverD(
                                 probability=mutation_probability,
                                 distribution_index=20),
                             termination_criterion=StoppingByEvaluations(
                                 max=max_evaluations),
                             dominance_comparator=DominanceComparator())

        elif algoritmo == "NSGAII":
            algorithm = NSGAII(problem=self.problem,
                               population_size=population,
                               offspring_population_size=population,
                               mutation=IntegerPolynomialMutationD(
                                   probability=mutation_probability,
                                   distribution_index=20),
                               crossover=SBXCrossoverD(
                                   probability=mutation_probability,
                                   distribution_index=20),
                               termination_criterion=StoppingByEvaluations(
                                   max=max_evaluations),
                               dominance_comparator=DominanceComparator())

        elif algoritmo == 'OMOPSO':
            algorithm = OMOPSO(problem=self.problem,
                               swarm_size=population,
                               epsilon=0.0075,
                               uniform_mutation=UniformMutation(
                                   probability=mutation_probability,
                                   perturbation=0.5),
                               non_uniform_mutation=NonUniformMutation(
                                   probability=mutation_probability,
                                   perturbation=0.5),
                               leaders=CrowdingDistanceArchive(100),
                               termination_criterion=StoppingByEvaluations(
                                   max=max_evaluations))

        elif algoritmo == 'SMPSO':
            algorithm = SMPSO(problem=self.problem,
                              swarm_size=population,
                              mutation=IntegerPolynomialMutation(
                                  probability=mutation_probability,
                                  distribution_index=20),
                              leaders=CrowdingDistanceArchive(100),
                              termination_criterion=StoppingByEvaluations(
                                  max=max_evaluations))

        elif algoritmo == 'SPEA2':
            algorithm = SPEA2(problem=self.problem,
                              population_size=population,
                              offspring_population_size=population,
                              mutation=IntegerPolynomialMutationD(
                                  probability=mutation_probability,
                                  distribution_index=20),
                              crossover=SBXCrossoverD(
                                  probability=mutation_probability,
                                  distribution_index=20),
                              termination_criterion=StoppingByEvaluations(
                                  max=max_evaluations),
                              dominance_comparator=DominanceComparator())

        else:
            print("Algoritmo no válido. Creando MOGA por defecto...")
            algorithm = MOGA(problem=self.problem,
                             population_size=population,
                             offspring_population_size=population,
                             mutation=IntegerPolynomialMutationD(
                                 probability=mutation_probability,
                                 distribution_index=20),
                             crossover=SBXCrossoverD(
                                 probability=mutation_probability,
                                 distribution_index=20),
                             termination_criterion=StoppingByEvaluations(
                                 max=max_evaluations),
                             dominance_comparator=DominanceComparator())
        self.algoritmo = algorithm
        self.algoritmo.observable.register(observer=ProgressBarObserver(
            max=max_evaluations))

        return algorithm
Esempio n. 10
0
from jmetal.util.solution import (
    print_function_values_to_file,
    print_variables_to_file,
    read_solutions,
)
from jmetal.util.termination_criterion import StoppingByEvaluations

if __name__ == "__main__":
    problem = ZDT1Modified()
    problem.reference_front = read_solutions(filename="resources/reference_front/ZDT1.pf")

    max_evaluations = 100
    algorithm = SMPSO(
        problem=problem,
        swarm_size=10,
        mutation=PolynomialMutation(probability=1.0 / problem.number_of_variables, distribution_index=20),
        leaders=CrowdingDistanceArchive(10),
        termination_criterion=StoppingByEvaluations(max_evaluations=max_evaluations),
        swarm_evaluator=SparkEvaluator(),
    )

    algorithm.run()
    front = algorithm.get_result()

    # Save results to file
    print_function_values_to_file(front, "FUN." + algorithm.get_name() + "." + problem.get_name())
    print_variables_to_file(front, "VAR." + algorithm.get_name() + "." + problem.get_name())

    print(f"Algorithm: {algorithm.get_name()}")
    print(f"Problem: {problem.get_name()}")
    print(f"Computing time: {algorithm.total_computing_time}")
Esempio n. 11
0
from jmetal.operator import PolynomialMutation
from jmetal.problem import DTLZ1
from jmetal.util.archive import CrowdingDistanceArchive
from jmetal.util.observer import ProgressBarObserver
from jmetal.util.solution_list import print_function_values_to_file, print_variables_to_file, read_solutions
from jmetal.util.termination_criterion import StoppingByEvaluations
from jmetal.util.visualization import InteractivePlot, Plot

if __name__ == '__main__':
    problem = DTLZ1(number_of_objectives=5)
    #problem.reference_front = read_solutions(filename='../../resources/reference_front/DTLZ1.3D.pf')

    algorithm = SMPSO(problem=problem,
                      swarm_size=100,
                      mutation=PolynomialMutation(probability=1.0 /
                                                  problem.number_of_variables,
                                                  distribution_index=20),
                      leaders=CrowdingDistanceArchive(100),
                      termination_criterion=StoppingByEvaluations(max=25000))

    algorithm.observable.register(observer=ProgressBarObserver(max=25000))

    algorithm.run()
    front = algorithm.get_result()

    # Plot front
    label = '{}-{} with {} objectives'.format(algorithm.get_name(),
                                              problem.get_name(),
                                              problem.number_of_objectives)

    plot_front = Plot(plot_title='Pareto front approximation',