APP_SITE = "" UPLOAD_FOLDER = 'static/upload/' ALLOWED_EXTENSIONS = ['jpg'] UPLOAD_ID = 0 # image AUDIO_ID = 0 # audio BATCH_SIZE = 64 BUFFER_SIZE = 1000 embedding_dim = 256 units = 512 top_k = 5000 vocab_size = top_k + 1 max_length = 46 tokenizer = jload('./model_weights/tokenizer.pkl') print("[0.-]. Tokenizer (words analyser) loaded.") # Build inception-v3 model image_model = tf.keras.models.load_model("model_weights/image_model_pre.h5") new_input = image_model.input # Get the input of the model-return a tensor hidden_layer = image_model.layers[ -1].output # hidden_layer is the output of the last layer of iv3 print("[0.-]. Inception-V3 model loaded.") image_features_extract_model = tf.keras.Model(inputs=new_input, outputs=hidden_layer) """ program function & class """ def load_image(image_path):
def load(filename): from joblib import load as jload return jload(filename)
import matplotlib.pyplot as plt sys.path.append(".") #' #' We can then load our predictor, features and outcome and finally #' some extra information that we will use to interpret the predictor #' behaviour. shared_dir = Path("/usr/share/data") regressor_file = str(shared_dir / "models/regressor.joblib") features_file_sparse = str(shared_dir / "data/processed/test_set/X.npz") features_file_dense = str(shared_dir / "data/processed/test_set/X.npy") outcome_file = str(shared_dir / "data/processed/test_set/y.npy") feature_info_file = str(shared_dir / "data/processed/test_set/feature_info.pkl") regressor = jload(regressor_file) features_path_sparse = Path(features_file_sparse) if features_path_sparse.exists(): X = load_npz(features_file_sparse).todense() else: X = np.load(features_file_dense) y = np.load(outcome_file) with open(feature_info_file, 'rb') as ifh: feature_info = pload(ifh) #' #' #' # Prediction performance #'