def test_encode_uint16(self): data, meta = data_io.read(self.fname16) data_comp = jls.encode(data) msg = 'oops size={:d}'.format(data_comp.size) self.assertTrue(data_comp.size < 2740000, msg)
def test_encode_band_resid(self): data, meta = data_io.read(self.fname_resid) data = data.squeeze() data_comp = jls.encode(data) msg = 'oops size={:d}'.format(data_comp.size) self.assertTrue(data_comp.size < 24000, msg)
def test_encode_decode_compare_uint8(self): data, meta = data_io.read(self.fname) # Compress, decompress. data_comp = jls.encode(data) data_image = jls.decode(data_comp) diff = np.sum( (data.squeeze().astype(np.int) - data_image.astype(np.int))**2) self.assertTrue(diff == 0)
def test_read_header(self): data, meta = data_io.read(self.fname) data_comp = jls.encode(data) header = jls.CharLS._CharLS.read_header(data_comp) self.assertTrue(header['width'] == 2592) self.assertTrue(header['height'] == 1944) self.assertTrue(header['bitspersample'] == 8) self.assertTrue(header['bytesperline'] == 2592) self.assertTrue(header['components'] == 1) self.assertTrue(header['allowedlossyerror'] == 0) self.assertTrue(header['ilv'] == 0)
import os import data_io import jpeg_ls # Read in an image from an existing PNG file. fname_img = 'test/gray_raw.png' data_image = data_io.read_PIL(fname_img) # This input image should be a numpy array. print('\nData properties:') print('Type: {:s}'.format(data_image.dtype)) print('Shape: {:s}'.format(data_image.shape)) # Compress image data to a sequence of bytes. data_buffer = jpeg_ls.encode(data_image) # Sizes. size_png = os.path.getsize(fname_img) print('\nSize of uncompressed image data: {:n}'.format(len(data_image.tostring()))) print('Size of PNG encoded data file: {:n}'.format(size_png)) print('Size of JPEG-LS encoded data: {:n}'.format(len(data_buffer))) # Decompress. data_image_b = jpeg_ls.decode(data_buffer) # Compare image data, before and after. is_same = (data_image == data_image_b).all() print('\nRestored data is identical to original? {:s}\n'.format(str(is_same)))
import os from . import data_io import jpeg_ls # Read in an image from an existing PNG file. fname_img = 'test/gray_raw.png' data_image = data_io.read_PIL(fname_img) # This input image should be a numpy array. print('\nData properties:') print('Type: {:s}'.format(data_image.dtype)) print('Shape: {:s}'.format(data_image.shape)) # Compress image data to a sequence of bytes. data_buffer = jpeg_ls.encode(data_image) # Sizes. size_png = os.path.getsize(fname_img) print('\nSize of uncompressed image data: {:n}'.format( len(data_image.tostring()))) print('Size of PNG encoded data file: {:n}'.format(size_png)) print('Size of JPEG-LS encoded data: {:n}'.format(len(data_buffer))) # Decompress. data_image_b = jpeg_ls.decode(data_buffer) # Compare image data, before and after. is_same = (data_image == data_image_b).all() print('\nRestored data is identical to original? {:s}\n'.format(str(is_same)))