Esempio n. 1
0
 def create(self):
     df = get_industries(name='%s_l%s' %
                         (self.project.name[:2], self.project.name[-1]))
     #生成列表
     self.to_track(df)
     # 调用父类方法保存:
     TPool.save(self, df)
Esempio n. 2
0
    def run(self):
        # get stock blocks from sina
        for category, name_ch in self.category_map.items():
            df = get_industries(name=category, date=None)
            df['code'] = df.index
            df['exchange'] = 'cn'
            df['list_date'] = df['start_date']
            df['timestamp'] = df['list_date']
            df['entity_type'] = 'block'
            df['block_type'] = category.replace("_", "")
            df['category'] = "industry"
            df['id'] = df['entity_id'] = df.apply(lambda x: "block_" + x.exchange + "_" + x.code, axis=1)
            df_to_db(data_schema=self.data_schema, df=df, provider=self.provider,
                     force_update=True)
            self.logger.info(f"完成聚宽数据行业数据保存:{name_ch}")

        concept_df = get_concepts()
        concept_df['code'] = concept_df.index
        concept_df['exchange'] = 'cn'
        concept_df['list_date'] = concept_df['start_date']
        concept_df['timestamp'] = concept_df['list_date']
        concept_df['entity_type'] = 'block'
        concept_df['category'] = "concept"
        concept_df['id'] = concept_df['entity_id'] = concept_df.apply(lambda x: "block_" + x.exchange + "_" + x.code,
                                                                      axis=1)
        df_to_db(data_schema=self.data_schema, df=concept_df, provider=self.provider,
                 force_update=True)
        self.logger.info(f"完成聚宽数据概念数据保存")
def get_sw1_valuation(start_date=None, end_date=None):
    #2014-02-22之后申万一级行业28个
    code = jd.get_industries(name='sw_l1',date='2014-02-22').index.tolist()
    days = jd.get_trade_days(start_date,end_date)
    index = jd.finance.run_query(jd.query(jd.finance.SW1_DAILY_VALUATION).filter(
            jd.finance.SW1_DAILY_VALUATION.date=='2014-02-22'
            ).limit(1)).columns.tolist()
    data =  pd.DataFrame(columns = index)
    for day in days:
        df=jd.finance.run_query(jd.query(jd.finance.SW1_DAILY_VALUATION).filter(
            jd.finance.SW1_DAILY_VALUATION.code.in_(code),
            jd.finance.SW1_DAILY_VALUATION.date==day
            ))
        name1 = set(list(map(lambda x:x[:-1],jd.get_industries(name='sw_l1',date='2014-02-22').name.tolist())))
        name2 = set(df.name.tolist())
        if not name1-name2:
            data = pd.concat([data, df], axis = 0, sort=False)
    return data
Esempio n. 4
0
def init_industry():
    jq.login()

    industry_list = []

    # sw_l1
    sw_l1_data = sdk.get_industries(name='sw_l1', date='2020-10-30')
    for index in sw_l1_data.index:
        name = sw_l1_data.loc[index]['name']
        industry = (index, name, 'sw_l1')
        industry_list.append(industry)

    # sw_l2
    sw_l1_data = sdk.get_industries(name='sw_l1', date='2020-10-30')
    for index in sw_l1_data.index:
        name = sw_l1_data.loc[index]['name']
        industry = (index, name, 'sw_l2')
        industry_list.append(industry)

    # jq_l1
    sw_l1_data = sdk.get_industries(name='jq_l1', date='2020-10-30')
    for index in sw_l1_data.index:
        name = sw_l1_data.loc[index]['name']
        industry = (index, name, 'jq_l1')
        industry_list.append(industry)

    # jq_l2
    sw_l1_data = sdk.get_industries(name='jq_l2', date='2020-10-30')
    for index in sw_l1_data.index:
        name = sw_l1_data.loc[index]['name']
        industry = (index, name, 'jq_l2')
        industry_list.append(industry)

    # zjw
    sw_l1_data = sdk.get_industries(name='zjw', date='2020-10-30')
    for index in sw_l1_data.index:
        name = sw_l1_data.loc[index]['name']
        industry = (index, name, 'zjw')
        industry_list.append(industry)

    print(industry_list)
    insert_sql = "insert into industry(code, name, type) values (%s, %s, %s)"
    my.insert_many(insert_sql, industry_list)
Esempio n. 5
0
 def get_industries_store(self, name='jq_l2', date=None):
     """
     获取行业信息并存入数据
     :param name:
     :param date:
     :return:
     """
     res = jq.get_industries(name=name, date=None)
     '''增加类别列,行业分类者,聚宽,申万,国证'''
     res['type'] = name
     '''DataFrame入库'''
     pymysql.install_as_MySQLdb()
     mysqlconnect = create_engine(self.mysql_conf.MYSQL_CON_STR)
     res.to_sql(name='industries',
                con=mysqlconnect,
                if_exists='append',
                index=True,
                index_label='index',
                chunksize=1000)
     flog.FinanceLoger.logger.info('所有行业信息已经保存成功')
     return
Esempio n. 6
0
def get_industry_stocks():
    df = jq.get_industries(name='zjw')

    s2i = {}

    row_num = len(df.index)
    for i in range(row_num):
        industry_code = df.index[i]

        industry_name = df.iloc[i]['name']

        #print industry_code, industry_name

        stocks = jq.get_industry_stocks(industry_code)

        for stock_code in stocks:
            if stock_code in s2i:
                s2i[stock_code].append(industry_name)
            else:
                s2i[stock_code] = [industry_name]

    return s2i
Esempio n. 7
0
    def save_data(start_date, end_date):
        jqdatasdk.auth(username=user_passwd.user_name,
                       password=user_passwd.passwd)
        names_to_id = red.get('names_to_id')
        names_to_id = json.loads(names_to_id)
        indices = pd.read_csv(
            r'C:\Users\never\Desktop\website-practice\indices.csv')
        names = []
        display_names = []
        index_name_to_id = {}
        for i in range(len(indices)):
            if str(indices.start_date[i]) <= start_date and end_date <= str(
                    indices.end_date[i]):
                names.append(indices.id[i])
                display_names.append(indices.display_name[i])
                index_name_to_id[indices.display_name[i]] = indices.id[i]
        indices = display_names
        names_to_id['index'] = index_name_to_id

        industries_df = jqdatasdk.get_industries('sw_l1')

        industry_end_date = {
            '建筑建材I': '2014-02-21',
            '机械设备I': '2014-02-21',
            '交运设备I': '2014-02-21',
            '信息设备I': '2014-02-21',
            '金融服务I': '2014-02-21',
            '信息服务I': '2014-02-21',
        }
        industries = []
        industry_name_to_id = {}

        for industry_name, industry_id, start_time in zip(
                industries_df.name.values, industries_df.index.values,
                industries_df.start_date.values):
            st = str(start_time)
            if industry_name in industry_end_date.keys(
            ) and st <= start_date and end_date < industry_end_date[
                    industry_name]:
                industries.append(industry_name)
                industry_name_to_id.update({industry_name: industry_id})
            elif industry_name not in industry_end_date.keys(
            ) and st <= start_date:
                industries.append(industry_name)
                industry_name_to_id.update({industry_name: industry_id})
        names_to_id['industry_index'] = industry_name_to_id

        stock_pool = {}
        stock_ids, stock_names = [], []
        stock_name_to_id = {}
        for i in range(len(display_names)):
            display, pool_id = display_names[i], names[i]
            p = jqdatasdk.get_all_securities(types=['stock'], date=start_date)
            p = p[p.end_date >= end_date]

            q = jqdatasdk.get_index_stocks(pool_id)
            id_to_name = dict(zip(p.index.values, p.display_name.values))
            stock_name_to_id.update(
                dict(zip(p.display_name.values, p.index.values)))
            stocks = []
            for item in q:
                try:
                    stocks.append(id_to_name[item])
                    stock_ids.append(item)
                    stock_names.append(id_to_name[item])

                except Exception as e:
                    pass
            stocks = sorted(stocks, key=lambda x: ' '.join(lazy_pinyin(x)))
            stock_pool[display] = stocks
        names_to_id['stock'] = stock_name_to_id

        get_funds = jqdatasdk.get_all_securities('fund', date=start_date)

        display_names = ['场内ETF', '场内LOF', '分级基金A', '分级基金B', '场内货币基金']
        names = ['etf', 'lof', 'fja', 'fjb', 'money_market_fund']
        exchanged_fund_pool = {}
        exchanged_name_to_id = dict(zip(display_names, names))
        for i in range(len(display_names)):
            display, pool_id = display_names[i], names[i]
            p = get_funds[get_funds['type'] == pool_id]
            y1 = (p.start_date <= start_date).values
            y2 = (p.end_date >= end_date).values
            p = p[np.logical_and(y1, y2)]

            q = p.index.values
            id_to_name = dict(zip(p.index.values, p.display_name.values))
            exchanged_name_to_id.update(
                dict(zip(p.display_name.values, p.index.values)))
            funds = []
            for item in q:
                try:
                    funds.append(id_to_name[item])
                except Exception as e:
                    pass
            funds = sorted(funds, key=lambda x: ' '.join(lazy_pinyin(x)))
            exchanged_fund_pool[display] = funds
        names_to_id['exchanged_fund'] = exchanged_name_to_id

        get_funds = jqdatasdk.get_all_securities('open_fund', date=start_date)
        get_funds = get_funds[get_funds.end_date >= end_date]
        display_names = ['股票型', '混合型', '债券型', '货币型', 'ETF联接', '黄金', 'QDII']
        names = [
            'stock_fund', 'mixture_fund', 'bond_fund', 'money_market_fund',
            'fund_fund', 'noble_metal_fund', 'QDII_fund'
        ]
        open_fund_pool = {}
        open_fund_name_to_id = dict(zip(display_names, names))
        for i in range(len(display_names)):
            display, pool_id = display_names[i], names[i]
            if pool_id != 'QDII_fund':
                p = get_funds[get_funds['type'] == pool_id]
            else:
                p = jqdatasdk.get_all_securities(pool_id)

            q = p.index.values
            id_to_name = dict(zip(p.index.values, p.display_name.values))
            open_fund_name_to_id.update(
                dict(zip(p.display_name.values, p.index.values)))
            funds = []
            for item in q:
                try:
                    funds.append(id_to_name[item])
                except Exception as e:
                    pass
            funds = sorted(funds, key=lambda x: ' '.join(lazy_pinyin(x)))
            open_fund_pool[display] = funds
        names_to_id['open_fund'] = open_fund_name_to_id

        data = {
            'stock_pool': stock_pool,
            'exchanged_fund_pool': exchanged_fund_pool,
            'open_fund_pool': open_fund_pool,
            'industry_pool': industries,
            'index_pool': indices
        }

        key_name = 'data-' + start_date + '-' + end_date + '.pkl'
        red[key_name] = json.dumps(data)
        red['names_to_id'] = json.dumps(names_to_id)
Esempio n. 8
0
# valuation是内置市值数据对象(这里表示查询valuation下所有的属性)
q = jq.query(jq.valuation).filter(jq.valuation.code=='000001.XSHE')
df = jq.get_fundamentals(q, '2021-01-01')
df


# ## 获取金融板块的股票

# In[17]:


import pandas as pd
pd.set_option('max_rows', None)
# 汽车制造 C36,零售业 F52,其他金融业:J69, 货币金融服务:J66 
# 计算机、通信和其他电子设备制造业 C39
temp = jq.get_industries()
# 筛选出和金融相关的产业
temp[temp['name'].str.contains('计算机')]


# In[18]:


"""
    智能投研
    1.筛选2020年市盈率小于行业平均水平
    2.市值大于行业平均水平的金融行业股票
    3.然后观察2021年的市盈率表现
"""
#设置benchmark_date
benchmark_date = '2020-12-31'
def get_industries(*args, **kwargs):
    return jqdatasdk.get_industries(*args, **kwargs)
Esempio n. 10
0
 def get_industries(self, industry_code: cfg.IndustryCode):
     return jq.get_industries(name=industry_code.name)