angular_clf = AngularRegression(clf=clf) bag_clf = BaggingRegressor(angular_clf, warm_start=True) clf_angle3 = make_pipeline(StandardScaler(), bag_clf) gat_angle3 = GeneralizationAcrossTime(clf=clf_angle3, scorer=scorer_angle, n_jobs=-1) clf = RidgeCV() angular_clf = AngularClassifier(clf=LogisticRegression()) bag_clf = BaggingRegressor(angular_clf, warm_start=True) clf_angle4 = make_pipeline(StandardScaler(), bag_clf) gat_angle4 = GeneralizationAcrossTime(clf=clf_angle3, scorer=scorer_angle, n_jobs=-1) for subject in subjects: report = OnlineReport() # target ------------------------------------------------------------------ epochs, events = load(subject, 'Target') # Decode angles ----------------------------------------------------------- gat = gat_angle angles = np.array(events['left_angle'].as_matrix(), float) gat.fit(epochs, y=angles) gat.score(epochs, y=angles) fig, ax = plt.subplots(1) gat.plot(ax=ax, show=True) report.add_figs_to_section(fig, 'left_SVR', subject + 'Target') print('left_SVR', 'Target') gat = gat_angle angles = np.array(events['right_angle'].as_matrix(), float)
elif decodAngle_parameter == 2: angle_bin = np.linspace(0+np.pi/6, np.pi*2+np.pi/6, 6) clf_angle = make_pipeline(StandardScaler(), AngularClassifier(clf=LogisticRegression(), bins=angle_bin)) gat_angle = GeneralizationAcrossTime(clf=clf_angle, scorer=scorer_angle, n_jobs=-1) clf_regress = make_pipeline(StandardScaler(), LinearSVR()) gat_regress = GeneralizationAcrossTime(clf=clf_regress, scorer=scorer_spearman, n_jobs=-1) gat_class = GeneralizationAcrossTime(n_jobs=-1) for subject in subjects: report = OnlineReport() # target ------------------------------------------------------------------ epochs, events = load(subject, 'Target') epochs.resample(64) # Decode angles ----------------------------------------------------------- gat = gat_angle angles = np.array(events['left_angle'].as_matrix(), float) gat.fit(epochs, y=angles) score = gat.score(epochs, y=angles) fig, ax = plt.subplots(1) gat.plot(ax=ax, show=False) report.add_figs_to_section(fig, 'left_angle', subject + 'Target') all_left_angle = list() all_left_angle.append(score) print('left_angle', 'Target')