def to_msg(self, boxes, class_ids, header): box_arr = BoundingBoxArray() box_arr.header = header for i in range(len(boxes)): if str(self.classes[class_ids[i]]) == "person": x, y, w, h = boxes[i] box = BoundingBox() box.label = i box.value = 0 box.pose.position.x = x box.pose.position.y = y box.pose.position.z = 0 box.pose.orientation.x = 0 box.pose.orientation.y = 0 box.pose.orientation.x = 0 box.pose.orientation.w = 0 box.dimensions.x = w box.dimensions.y = h box.dimensions.z = 0 box_arr.boxes.append(box) return box_arr
def init_boundingboxarray(self, num_boxes=30): self.boundingBoxArray_object = BoundingBoxArray() h = std_msgs.msg.Header() h.stamp = rospy.Time.now( ) # Note you need to call rospy.init_node() before this will work h.frame_id = "world" self.boundingBoxArray_object.header = h self.minimum_dimension = 0.2 self.init_x_position = 1.0 for i in range(num_boxes): new_box = BoundingBox() new_box.header = h new_box.pose = Pose() new_box.pose.position.x = self.init_x_position + i * self.minimum_dimension new_box.dimensions = Vector3() new_box.dimensions.x = self.minimum_dimension new_box.dimensions.y = self.minimum_dimension new_box.dimensions.z = self.minimum_dimension new_box.label = i new_box.value = i * self.minimum_dimension self.boundingBoxArray_object.boxes.append(new_box) self.publish_once(self.boundingBoxArray_object)
def create_bb_msg(self, cur_bb, is_map_coord=False): bb_corners = np.array([cur_bb['upper_left_px'], cur_bb['lower_right_px']]) if is_map_coord is True: bb_corners_map_coord = bb_corners else: bb_corners_px_coord = bb_corners bb_corners_map_coord = self.img2map.pixel2map(bb_corners_px_coord) bb_corners_mean = np.mean(bb_corners_map_coord, axis=0) bb_corners_diff = np.abs(bb_corners_map_coord[0, :] - bb_corners_map_coord[1, :]) cur_bb_msg = BoundingBox() cur_bb_msg.header.frame_id = 'map' cur_bb_msg.header.stamp = rospy.Time.now() cur_bb_msg.pose.position.x = bb_corners_mean[0] cur_bb_msg.pose.position.y = bb_corners_mean[1] cur_bb_msg.pose.position.z = 0 cur_bb_msg.pose.orientation.x = 0 cur_bb_msg.pose.orientation.y = 0 cur_bb_msg.pose.orientation.z = 0 cur_bb_msg.pose.orientation.w = 1 cur_bb_msg.dimensions.x = bb_corners_diff[0] cur_bb_msg.dimensions.y = bb_corners_diff[1] cur_bb_msg.dimensions.z = 0.1 cur_bb_msg.value = 1.0 cur_bb_msg.label = 1 return cur_bb_msg
def rslidar_callback(msg): t_t = time.time() #calib = getCalibfromFile(calib_file) #calib = getCalibfromROS(calibmsg) frame = msg.header.seq arr_bbox = BoundingBoxArray() msg_cloud = ros_numpy.point_cloud2.pointcloud2_to_array(msg) np_p = get_xyz_points(msg_cloud, True) print(" ") #scores, dt_box_lidar, types = proc_1.run(np_p) scores, dt_box_lidar, types, pred_dict = proc_1.run(np_p, calib, frame) annos_sorted = sortbydistance(dt_box_lidar, scores, types) #pp_AB3DMOT_list = anno_to_AB3DMOT(pred_dict, msg) pp_AB3DMOT_list = anno_to_AB3DMOT(dt_box_lidar, scores, types, msg) pp_list = anno_to_sort(dt_box_lidar, scores, types) pp_3D_list = anno_to_3Dsort(annos_sorted, types) MarkerArray_list = anno_to_rviz(dt_box_lidar, scores, types, msg) if scores.size != 0: for i in range(scores.size): if scores[i] > threshold: bbox = BoundingBox() bbox.header.frame_id = msg.header.frame_id bbox.header.stamp = rospy.Time.now() q = yaw2quaternion(float(dt_box_lidar[i][6])) bbox.pose.orientation.x = q[1] bbox.pose.orientation.y = q[2] bbox.pose.orientation.z = q[3] bbox.pose.orientation.w = q[0] bbox.pose.position.x = float( dt_box_lidar[i][0]) - movelidarcenter bbox.pose.position.y = float(dt_box_lidar[i][1]) bbox.pose.position.z = float(dt_box_lidar[i][2]) bbox.dimensions.x = float(dt_box_lidar[i][3]) bbox.dimensions.y = float(dt_box_lidar[i][4]) bbox.dimensions.z = float(dt_box_lidar[i][5]) bbox.value = scores[i] bbox.label = int(types[i]) arr_bbox.boxes.append(bbox) print("total callback time: ", time.time() - t_t) arr_bbox.header.frame_id = msg.header.frame_id arr_bbox.header.stamp = msg.header.stamp if len(arr_bbox.boxes) is not 0: pub_arr_bbox.publish(arr_bbox) arr_bbox.boxes = [] else: arr_bbox.boxes = [] pub_arr_bbox.publish(arr_bbox) pubRviz.publish(MarkerArray_list) pubSort.publish(pp_list) pub3DSort.publish(pp_3D_list) pubAB3DMOT.publish(pp_AB3DMOT_list)
def rslidar_callback(msg): t_t = time.time() arr_bbox = BoundingBoxArray() #t = time.time() msg_cloud = ros_numpy.point_cloud2.pointcloud2_to_array(msg) np_p = get_xyz_points(msg_cloud, True) print(" ") #print("prepare cloud time: ", time.time() - t) #t = time.time() scores, dt_box_lidar, types = proc_1.run(np_p) #print("network forward time: ", time.time() - t) # filter_points_sum = [] #t = time.time() if scores.size != 0: for i in range(scores.size): bbox = BoundingBox() bbox.header.frame_id = msg.header.frame_id bbox.header.stamp = rospy.Time.now() q = yaw2quaternion(float(dt_box_lidar[i][6])) bbox.pose.orientation.x = q[0] bbox.pose.orientation.y = q[1] bbox.pose.orientation.z = q[2] bbox.pose.orientation.w = q[3] bbox.pose.position.x = float(dt_box_lidar[i][0]) bbox.pose.position.y = float(dt_box_lidar[i][1]) bbox.pose.position.z = float(dt_box_lidar[i][2]) bbox.dimensions.x = float(dt_box_lidar[i][3]) bbox.dimensions.y = float(dt_box_lidar[i][4]) bbox.dimensions.z = float(dt_box_lidar[i][5]) bbox.value = scores[i] bbox.label = types[i] arr_bbox.boxes.append(bbox) # filter_points = np_p[point_indices[:,i]] # filter_points_sum.append(filter_points) #print("publish time cost: ", time.time() - t) # filter_points_sum = np.concatenate(filter_points_sum, axis=0) # filter_points_sum = filter_points_sum[:, :3] # print("output of concatenate:", filter_points_sum) # filter_points_sum = np.arange(24).reshape(8,3) # cluster_cloud = xyz_array_to_pointcloud2(filter_points_sum, stamp=rospy.Time.now(), frame_id=msg.header.frame_id) # pub_segments.publish(cluster_cloud) print("total callback time: ", time.time() - t_t) arr_bbox.header.frame_id = msg.header.frame_id arr_bbox.header.stamp = rospy.Time.now() if len(arr_bbox.boxes) is not 0: pub_arr_bbox.publish(arr_bbox) arr_bbox.boxes = [] else: arr_bbox.boxes = [] pub_arr_bbox.publish(arr_bbox)
def callback(self, box_msg): labeled_boxes = {} label_buf = [] orientation = Pose().orientation for box in box_msg.boxes: if box.label in label_buf: labeled_boxes[box.label] += [self.get_points(box)] orientation = box.pose.orientation else: labeled_boxes[box.label] = [self.get_points(box)] label_buf.append(box.label) bounding_box_msg = BoundingBoxArray() for label, boxes in zip(labeled_boxes.keys(), labeled_boxes.values()): thresh = self.thresh if self.label_lst[label] == 'shelf_flont': thresh = 2.0 clustering = Clustering() boxes = np.array(boxes) result = clustering.clustering_wrapper(boxes, thresh) for cluster in result: max_candidates = [ boxes[i][0] + (boxes[i][1] * 0.5) for i in cluster.indices ] min_candidates = [ boxes[i][0] - (boxes[i][1] * 0.5) for i in cluster.indices ] candidates = np.array(max_candidates + min_candidates) dimension = candidates.max(axis=0) - candidates.min(axis=0) center = candidates.min(axis=0) + (dimension * 0.5) distances = self.get_distances( np.array([boxes[i][0] for i in cluster.indices]), [ np.linalg.norm(boxes[i][1]) * 0.5 for i in cluster.indices ]) tmp_box = BoundingBox() tmp_box.header = box_msg.header tmp_box.dimensions.x = dimension[0] tmp_box.dimensions.y = dimension[1] tmp_box.dimensions.z = dimension[2] tmp_box.pose.position.x = center[0] tmp_box.pose.position.y = center[1] tmp_box.pose.position.z = center[2] tmp_box.pose.orientation = orientation tmp_box.label = label tmp_box.value = distances.mean() bounding_box_msg.boxes.append(tmp_box) bounding_box_msg.header = box_msg.header self.box_pub.publish(bounding_box_msg)
def convert(header, xx_cube): boundingboxarray_msg = BoundingBoxArray() boundingboxarray_msg.header = header num_xx = int(xx_cube.shape[0] / 8) for i in range(num_xx): cube_raw = xx_cube[range(8 * i, 8 * i + 8), :] bb_in_camera = np.column_stack((cube_raw, np.ones((8, 1)))) bb_in_lidar = np.linalg.inv(calib.lidar_to_cam).dot(bb_in_camera.T).T boundingbox_msg = BoundingBox() boundingbox_msg.header = boundingboxarray_msg.header # boundingbox中心点位置 boundingbox_msg.pose.position.x = bb_in_lidar[:, 0].mean() boundingbox_msg.pose.position.y = bb_in_lidar[:, 1].mean() boundingbox_msg.pose.position.z = bb_in_lidar[:, 2].mean() # 寻找y坐标最小的顶点,计算相邻两个顶点的旋转角及边长 bb_bottom = bb_in_lidar[:4] min_idx = np.where(bb_bottom[:, 1] == bb_bottom[:, 1].min())[0][0] theta = math.atan2( bb_bottom[(min_idx + 1) % 4, 1] - bb_bottom[min_idx, 1], bb_bottom[(min_idx + 1) % 4, 0] - bb_bottom[min_idx, 0]) b_1 = ( (bb_bottom[(min_idx + 1) % 4, 1] - bb_bottom[min_idx, 1])**2 + (bb_bottom[(min_idx + 1) % 4, 0] - bb_bottom[min_idx, 0])**2)**0.5 b_2 = ( (bb_bottom[(min_idx + 3) % 4, 1] - bb_bottom[min_idx, 1])**2 + (bb_bottom[(min_idx + 3) % 4, 0] - bb_bottom[min_idx, 0])**2)**0.5 if theta < 90 * math.pi / 180: rotation_angle = theta dimension_x = b_1 dimension_y = b_2 else: rotation_angle = theta - 90 * math.pi / 180 dimension_x = b_2 dimension_y = b_1 # boundingbox旋转角四元数 boundingbox_msg.pose.orientation.x = 0 boundingbox_msg.pose.orientation.y = 0 boundingbox_msg.pose.orientation.z = math.sin(0.5 * rotation_angle) boundingbox_msg.pose.orientation.w = math.cos(0.5 * rotation_angle) # boundingbox尺寸 boundingbox_msg.dimensions.x = dimension_x boundingbox_msg.dimensions.y = dimension_y boundingbox_msg.dimensions.z = bb_in_lidar[:, 2].max( ) - bb_in_lidar[:, 2].min() boundingbox_msg.value = 0 boundingbox_msg.label = 0 boundingboxarray_msg.boxes.append(boundingbox_msg) return boundingboxarray_msg
def detector_callback(self, pcl_msg): start = time.time() # rospy.loginfo('Processing Pointcloud with PointRCNN') arr_bbox = BoundingBoxArray() seq = pcl_msg.header.seq stamp = pcl_msg.header.stamp # in message pointcloud has x pointing forward, y pointing to the left and z pointing upward pts_lidar = np.array([[ p[0], p[1], p[2], p[3] ] for p in pc2.read_points( pcl_msg, skip_nans=True, field_names=("x", "y", "z", "intensity")) ], dtype=np.float32) scores, dt_box_lidar, types = self.run_model(pts_lidar) # TODO: question convert into torch tensors? torch.from_numpy(pts_lidar) # move onto gpu if available # TODO: check if needs translation/rotation to compensate for tilt etc. if scores.size != 0: for i in range(scores.size): bbox = BoundingBox() bbox.header.frame_id = pcl_msg.header.frame_id bbox.header.stamp = rospy.Time.now() # bbox.header.seq = pcl_msg.header.seq q = yaw2quaternion(float(dt_box_lidar[i][6])) bbox.pose.orientation.x = q[1] bbox.pose.orientation.y = q[2] bbox.pose.orientation.z = q[3] bbox.pose.orientation.w = q[0] bbox.pose.position.x = float(dt_box_lidar[i][0]) bbox.pose.position.y = float(dt_box_lidar[i][1]) bbox.pose.position.z = float(dt_box_lidar[i][2]) bbox.dimensions.x = float(dt_box_lidar[i][3]) bbox.dimensions.y = float(dt_box_lidar[i][4]) bbox.dimensions.z = float(dt_box_lidar[i][5]) bbox.value = scores[i] bbox.label = int(types[i]) arr_bbox.boxes.append(bbox) # rospy.loginfo("3D detector time: {}".format(time.time() - start)) arr_bbox.header.frame_id = pcl_msg.header.frame_id arr_bbox.header.stamp = pcl_msg.header.stamp arr_bbox.header.seq = pcl_msg.header.seq if len(arr_bbox.boxes) != 0: self.pub_arr_bbox.publish(arr_bbox) arr_bbox.boxes = [] else: arr_bbox.boxes = [] self.pub_arr_bbox.publish(arr_bbox)
def dummyBoundingBoxPublisher(): pub = rospy.Publisher('/dummy_bounding_box', BoundingBox, queue_size=1) rospy.init_node('dummyBoundingBoxPublisher_node', anonymous=True) rate = rospy.Rate(25) boundingBox_object = BoundingBox() i = 0 pose_object = Pose() dimensions_object = Vector3() minimum_dimension = 0.2 boundingBox_object.label = 1234 while not rospy.is_shutdown(): h = std_msgs.msg.Header() h.stamp = rospy.Time.now( ) # Note you need to call rospy.init_node() before this will work h.frame_id = "world" boundingBox_object.header = h sinus_value = math.sin(i / 10.0) boundingBox_object.value = sinus_value # Change Pose to see effects pose_object.position.x = 1.0 pose_object.position.y = 0.0 pose_object.position.z = sinus_value # ai, aj, ak == roll, pitch, yaw quaternion = tf.transformations.quaternion_from_euler(ai=0, aj=0, ak=sinus_value) pose_object.orientation.x = quaternion[0] pose_object.orientation.y = quaternion[1] pose_object.orientation.z = quaternion[2] pose_object.orientation.w = quaternion[3] dimensions_object.x = sinus_value / 10 + minimum_dimension dimensions_object.y = minimum_dimension dimensions_object.z = minimum_dimension # Assign pose and dimension objects boundingBox_object.pose = pose_object boundingBox_object.dimensions = dimensions_object pub.publish(boundingBox_object) rate.sleep() i += 1
def rslidar_callback(msg): # t_t = time.time() arr_bbox = BoundingBoxArray() msg_cloud = ros_numpy.point_cloud2.pointcloud2_to_array(msg) np_p = get_xyz_points(msg_cloud, True) print(" ") seq = msg.header.seq stamp = msg.header.stamp input_points = { 'stamp': stamp, 'seq': seq, 'points': np_p } if(proc_1.get_lidar_data(input_points)): scores, dt_box_lidar, types = proc_1.run() if scores.size != 0: for i in range(scores.size): bbox = BoundingBox() bbox.header.frame_id = msg.header.frame_id bbox.header.stamp = rospy.Time.now() q = yaw2quaternion(float(dt_box_lidar[i][8])) bbox.pose.orientation.x = q[1] bbox.pose.orientation.y = q[2] bbox.pose.orientation.z = q[3] bbox.pose.orientation.w = q[0] bbox.pose.position.x = float(dt_box_lidar[i][0]) bbox.pose.position.y = float(dt_box_lidar[i][1]) bbox.pose.position.z = float(dt_box_lidar[i][2]) bbox.dimensions.x = float(dt_box_lidar[i][4]) bbox.dimensions.y = float(dt_box_lidar[i][3]) bbox.dimensions.z = float(dt_box_lidar[i][5]) bbox.value = scores[i] bbox.label = int(types[i]) arr_bbox.boxes.append(bbox) # print("total callback time: ", time.time() - t_t) arr_bbox.header.frame_id = msg.header.frame_id arr_bbox.header.stamp = msg.header.stamp if len(arr_bbox.boxes) is not 0: pub_arr_bbox.publish(arr_bbox) arr_bbox.boxes = [] else: arr_bbox.boxes = [] pub_arr_bbox.publish(arr_bbox)
def vis_callback(msg): obj_bba = BoundingBoxArray() obj_bba.header.frame_id = 'map' for obj in msg.objects: obj_bb = BoundingBox() res = tosm.query_individual(obj.object_name + str(obj.ID)) obj_bb.header = obj.header pose = res.pose[0].replace('[', '').replace(']', '').split(',') size = res.size[0].replace('[', '').replace(']', '').split(',') obj_bb.pose.position.x = float(pose[0]) obj_bb.pose.position.y = float(pose[1]) obj_bb.pose.position.z = float(pose[2]) + float(size[2]) / 2.0 obj_bb.pose.orientation.x = float(pose[3]) obj_bb.pose.orientation.y = float(pose[4]) obj_bb.pose.orientation.z = float(pose[5]) obj_bb.pose.orientation.w = float(pose[6]) # bounding box size obj_bb.dimensions.x = float(size[0]) obj_bb.dimensions.y = float(size[1]) obj_bb.dimensions.z = float(size[2]) # likelihood obj_bb.value = 1 # determine the color if (obj.object_name == "hingeddoor"): obj_bb.label = 1 elif (obj.object_name == "elevatordoor"): obj_bb.label = 2 elif (obj.object_name == "A"): obj_bb.label = 3 elif (obj.object_name == "B"): obj_bb.label = 4 elif (obj.object_name == "C"): obj_bb.label = 5 else: obj_bb.label = 10 obj_bba.boxes.append(obj_bb) ses_map_object_vis_pub.publish(obj_bba)
def to_msg(self): msg = BoundingBox() #msg.header = header msg.label = self.id msg.value = self.d_area msg.pose.position.x = self.center[-1][0] msg.pose.position.y = self.center[-1][1] msg.pose.position.z = 0 msg.pose.orientation.x = self.direction[0] msg.pose.orientation.y = self.direction[1] msg.pose.orientation.z = 0 msg.pose.orientation.w = 0 msg.dimensions.x = self.withe msg.dimensions.y = self.hight msg.dimensions.z = 0 return msg
def to_msg(self): msg = BoundingBox() msg.label = self.id msg.value = 0 msg.pose.position.x = self.bbox[0] msg.pose.position.y = self.bbox[1] msg.pose.position.z = 0 msg.pose.orientation.x = 0 msg.pose.orientation.y = 0 msg.pose.orientation.x = 0 msg.pose.orientation.w = 0 msg.dimensions.x = self.bbox[2] - self.bbox[0] msg.dimensions.y = self.bbox[3] - self.bbox[1] msg.dimensions.z = 0 #print (msg) return msg
box_b.label = 5 box_arr = BoundingBoxArray() now = rospy.Time.now() box_a.header.stamp = now box_b.header.stamp = now box_arr.header.stamp = now box_a.header.frame_id = "map" box_b.header.frame_id = "map" box_arr.header.frame_id = "map" q = quaternion_about_axis((counter % 100) * math.pi * 2 / 100.0, [0, 0, 1]) box_a.pose.orientation.x = q[0] box_a.pose.orientation.y = q[1] box_a.pose.orientation.z = q[2] box_a.pose.orientation.w = q[3] box_b.pose.orientation.w = 1 box_b.pose.position.y = 2 box_b.dimensions.x = (counter % 10 + 1) * 0.1 box_b.dimensions.y = ((counter + 1) % 10 + 1) * 0.1 box_b.dimensions.z = ((counter + 2) % 10 + 1) * 0.1 box_a.dimensions.x = 1 box_a.dimensions.y = 1 box_a.dimensions.z = 1 box_a.value = (counter % 100) / 100.0 box_b.value = 1 - (counter % 100) / 100.0 box_arr.boxes.append(box_a) box_arr.boxes.append(box_b) pub.publish(box_arr) r.sleep() counter = counter + 1
def rslidar_callback(msg): t_t = time.time() arr_bbox = BoundingBoxArray() msg_cloud = ros_numpy.point_cloud2.pointcloud2_to_array(msg) np_p = get_xyz_points(msg_cloud, True) print(" ") scores, dt_box_lidar, types = proc_1.run(np_p) MarkerArray_list = MarkerArray() ##CREO EL MENSAJE GENERAL if scores.size != 0: for i in range(scores.size): if scores[i] > 0.4: bbox = BoundingBox() bbox.header.frame_id = msg.header.frame_id bbox.header.stamp = rospy.Time.now() q = yaw2quaternion(float(dt_box_lidar[i][6])) bbox.pose.orientation.x = q[1] bbox.pose.orientation.y = q[2] bbox.pose.orientation.z = q[3] bbox.pose.orientation.w = q[0] bbox.pose.position.x = float(dt_box_lidar[i][0]) - 69.12 / 2 bbox.pose.position.y = float(dt_box_lidar[i][1]) bbox.pose.position.z = float(dt_box_lidar[i][2]) bbox.dimensions.x = float(dt_box_lidar[i][3]) bbox.dimensions.y = float(dt_box_lidar[i][4]) bbox.dimensions.z = float(dt_box_lidar[i][5]) bbox.value = scores[i] bbox.label = int(types[i]) arr_bbox.boxes.append(bbox) obj = Marker() #obj.CUBE = 1 obj.header.stamp = rospy.Time.now() obj.header.frame_id = msg.header.frame_id obj.type = Marker.CUBE obj.id = i obj.lifetime = rospy.Duration.from_sec(1) #obj.type = int(types[i]) obj.pose.position.x = float(dt_box_lidar[i][0]) - 69.12 / 2 obj.pose.position.y = float(dt_box_lidar[i][1]) obj.pose.position.z = float(dt_box_lidar[i][2]) q = yaw2quaternion(float(dt_box_lidar[i][6])) obj.pose.orientation.x = q[1] obj.pose.orientation.y = q[2] obj.pose.orientation.z = q[3] obj.pose.orientation.w = q[0] obj.scale.x = float(dt_box_lidar[i][3]) obj.scale.y = float(dt_box_lidar[i][4]) obj.scale.z = float(dt_box_lidar[i][5]) obj.color.r = 255 obj.color.a = 0.5 MarkerArray_list.markers.append(obj) print("total callback time: ", time.time() - t_t) arr_bbox.header.frame_id = msg.header.frame_id arr_bbox.header.stamp = msg.header.stamp if len(arr_bbox.boxes) is not 0: pub_arr_bbox.publish(arr_bbox) arr_bbox.boxes = [] else: arr_bbox.boxes = [] pub_arr_bbox.publish(arr_bbox) pubMarker.publish(MarkerArray_list)
box_a.label = 2 box_b.label = 5 box_arr = BoundingBoxArray() now = rospy.Time.now() box_a.header.stamp = now box_b.header.stamp = now box_arr.header.stamp = now box_a.header.frame_id = "map" box_b.header.frame_id = "map" box_arr.header.frame_id = "map" q = quaternion_about_axis((counter % 100) * math.pi * 2 / 100.0, [0, 0, 1]) box_a.pose.orientation.x = q[0] box_a.pose.orientation.y = q[1] box_a.pose.orientation.z = q[2] box_a.pose.orientation.w = q[3] box_b.pose.orientation.w = 1 box_b.pose.position.y = 2 box_b.dimensions.x = (counter % 10 + 1) * 0.1 box_b.dimensions.y = ((counter + 1) % 10 + 1) * 0.1 box_b.dimensions.z = ((counter + 2) % 10 + 1) * 0.1 box_a.dimensions.x = 1 box_a.dimensions.y = 1 box_a.dimensions.z = 1 box_a.value = (counter % 100) / 100.0 box_b.value = 1 - (counter % 100) / 100.0 box_arr.boxes.append(box_a) box_arr.boxes.append(box_b) pub.publish(box_arr) r.sleep() counter = counter + 1