Esempio n. 1
0
def generate_roadway():
    import julia
    j = julia.Julia()
    j.using("NGSIM")
    base_dir = os.path.expanduser('~/Autoenv/data/')
    j.write_roadways_to_dxf(base_dir)
    j.write_roadways_from_dxf(base_dir)
Esempio n. 2
0
def _call_powermodels(pm, julia_file):  #pragma: no cover
    buffer_file = os.path.join(tempfile.gettempdir(), "pp_pm.json")
    logger.debug("writing PowerModels data structure to %s" % buffer_file)
    with open(buffer_file, 'w') as outfile:
        json.dump(pm, outfile)
    try:
        import julia
        from julia import Main
    except ImportError:
        raise ImportError(
            "Please install pyjulia to run pandapower with PowerModels.jl")
    try:
        j = julia.Julia()
    except:
        raise UserWarning(
            "Could not connect to julia, please check that Julia is installed and pyjulia is correctly configured"
        )

    Main.include(os.path.join(pp_dir, "opf", 'pp_2_pm.jl'))
    try:
        run_powermodels = Main.include(julia_file)
    except ImportError:
        raise UserWarning("File %s could not be imported" % julia_file)
    result_pm = run_powermodels(buffer_file)
    return result_pm
Esempio n. 3
0
def install(
        julia_download_path='https://julialang-s3.julialang.org/bin/linux/x64/1.4/julia-1.4.0-linux-x86_64.tar.gz',
        julia_target_path=None):
    '''
    :param julia_download_path: Path for the julia download, you can modify for your preferred version
    :param julia_target_path: Specify where to install Julia, if not specified will install in $HOME$/julia
    '''
    if julia_target_path == None:
        julia_target_path = os.path.join(os.path.expanduser("~"), 'julia')
    if not os.path.isdir(julia_target_path):
        os.mkdir(julia_target_path)
    download_path = os.path.join(julia_target_path, 'julia_install.tar.gz')
    print("Downloading Julia:")
    wget.download(julia_download_path, download_path)
    print("\nExtracting...")
    tar = tarfile.open(download_path, "r:gz")
    tar.extractall(julia_target_path)
    _, partial_path = get_julia_path_from_dir(julia_target_path)
    os.environ["PATH"] += os.pathsep + partial_path
    os.system("echo '# added by dpmmpython' >> ~/.bashrc")
    os.system("echo 'export PATH=\"" + partial_path + ":$PATH\"' >> ~/.bashrc")
    print("Configuring PyJulia")
    julia.install()
    julia.Julia(compiled_modules=False)
    print("Adding DPMMSubClusters package")
    from julia import Pkg
    Pkg.add("DPMMSubClusters")
    print(
        "Please exit the shell and restart, before attempting to use the package"
    )
Esempio n. 4
0
class Environment:
    envname = "env"
    jl = julia.Julia()
    pacman = Pkg

    def __init__(self, envname):
        """The initialization Function loads a virtual environment."""
        print("Loading Package Manager")
        self.pacman = Pkg
        print("Pkg loaded")
        if envname != "Global":
            self.envname = envname
            self.pacman.activate(envname)
            print("Activated Package Environment: " + envname)
            print("Environment available at: /" + envname)

    def Add(self, pack):
        """Adds a package"""
        self.pacman.add(pack)

    def Using(self, packagename):
        """Imports and returns a package"""
        impstring = "from julia import " + str(packagename)
        exec(impstring)
        grabstring = str(packagename)
        w = eval(grabstring)
        return (w)

    def Switch(self, envname):
        """Allows you to quickly switch environments"""
        self.pacman.activate(envname)
        print("Environment created at /" + envname)

    def List(self):
        """Lists the current packages inside of this environment"""
        return (Pkg.installed())

    def Remove(self, packagename):
        """Removes a given package from the environment."""
        self.pacman.rm(packagename)
        print("Package " + packagename + " Has been successfully removed.")

    def Build(self, packagename):
        self.pacman.build(packagename)

    def Update(self):
        self.pacman.update()

    def Instantiate(self):
        self.pacman.instantiate()

    def Test(self, packagename):
        self.pacman.test(packagename)

    def Resolve(self):
        self.pacman.resolve()

    def Include(self, filepath):
        self.jl.include(filepath)
        print("You will now be able to add your file with Environment.add()")
 def __makeJulia(self):
     # make a dictionary that has all of the values that the .frac file gave you
     # then make a julia file
     with open(self.fracfile, 'r') as fracFile:
         JuliaDict = dict()
         infoName = ''
         info = ''
         count = 0
         for i in fracFile:
             if ':' in i:
                 infoName = i.split(':')[0]
                 infoName = infoName.strip('\n')
                 infoName = infoName.lower()
                 info = i.split(':')[1]
                 info = info.strip('\n')
                 info = info.strip(' ')
                 if infoName == 'pixels' or infoName == 'iterations' or infoName == 'Iterations':
                     if infoName == 'Iterations':
                         infoName = 'iterations'
                     JuliaDict[infoName] = int(info)
                 elif infoName != 'type':
                     JuliaDict[infoName] = float(info)
                 else:
                     JuliaDict[infoName] = info
     julia.Julia(JuliaDict, self.__fileName)
Esempio n. 6
0
def load_julia_with_Shearlab():
    # Importing base
    j = julia.Julia()  #, debug='False')
    j.eval('using Shearlab')
    j.eval('using PyPlot')
    j.eval('using Images')
    return j
Esempio n. 7
0
 def __init__(self, counter, max_size, force_python=False):
     self.cache = dict()
     if not force_python:
         try:
             import julia
             self.julia = julia.Julia()
             self.julia.using("Revtok")
             self.vocab = self.julia.buildvocab(counter, max_size)
             return
         except ImportError:
             print('For faster subwords, please install Julia 0.6, pyjulia, '
                   'and Revtok.jl. Falling back to Python implementation...')
         except Exception as e:
             print(e)
             print('for faster subwords, please install Revtok.jl. '
                   'Falling back to Python implementation...')
     self.vocab = Counter(''.join(counter.keys())).most_common()
     self.vocab.sort(key=lambda tup: (-tup[1], tup[0]))
     self.vocab = dict(self.vocab)
     ngrams = list(NGrams(counter).ngrams.values())
     ngrams.sort(key=attrgetter('text'))
     key = attrgetter('entropy')
     for i in tqdm(range(max_size - len(self.vocab)), 'building subword vocab'):
         ngrams.sort(key=key, reverse=True)
         best = ngrams[0]
         #print(best)
         for utterance in best.utterances:
             seen = set([best])
             for ngram in utterance.ngrams:
                 if ngram not in seen:
                     ngram.count -= utterance.count * utterance.overlaps(ngram, best)
                     seen.add(ngram)
         self.vocab[ngrams[0].text] = ngrams[0].entropy
         ngrams = ngrams[1:]
     self.julia = None
Esempio n. 8
0
    def __init__(
        self,
        n_features,  # number of features
        batch_size,  # number of simultaneous sims
        weights,  # reward weights, as a vector
        # NGSIM trajdata indeces, full set is [1,2,3,4,5,6]
        trajdata_indeces,
        max_nsteps=1000,
    ):

        self.tstep = 0
        self.max_nsteps = max_nsteps
        self.n_features = n_features

        # Load in functions
        self._name_dump = 'julia(JuliaDriveEnv2DBatch.auto2D_path={})'.format(
            auto2D_path)
        #debug = open('debug.log', 'a'); debug.write('{}\n'.format(self._name_dump)); debug.close()
        self.j = julia.Julia()
        self.j.eval("include(\"" + auto2D_path + "\")")
        self.j.using("Auto2D")

        ipdb.set_trace()
        self.simparams = self.j.gen_simparams(trajdata_indeces, weights[0],
                                              weights[1], weights[2],
                                              weights[3], weights[4],
                                              weights[5], weights[6],
                                              batch_size)
        self.features = self.j.alloc_features(batch_size)

        if GX:
            _, self.ax = plt.subplots(1, 1)
Esempio n. 9
0
 def __init__(self, nbArms, lower=0., amplitude=1.):
     """ Will fail directly if the bridge with julia is unavailable or buggy."""
     super(UCBjulia, self).__init__(nbArms,
                                    lower=lower,
                                    amplitude=amplitude)
     self.t = 0
     # Importing the julia module and creating the bridge
     try:
         import julia
     except ImportError:
         print(
             "Error: unable to load the 'julia' Python module. Install with 'pip install julia', or see https://github.com/JuliaPy/pyjulia/"
         )  # DEBUG
     _j = julia.Julia()
     try:
         self._index_function = _j.evalfile("Policies/UCBjulia.jl")
     except RuntimeError:
         try:
             self._index_function = _j.evalfile("UCBjulia.jl")
         except RuntimeError:
             raise ValueError(
                 "Error: Unable to load 'UCBjulia.jl' julia file."
             )  # WARNING
     try:
         self._index_function([1], [1], 1, 1)
     except (RuntimeError, ValueError):
         raise ValueError(
             "Error: the index function loaded from 'UCBjulia.jl' is bugged or unavailable."
         )  # WARNING
Esempio n. 10
0
def _call_powermodels(pm, julia_file=None):
    buffer_file = os.path.join(tempfile.gettempdir(), "pp_pm.json")
    with open(buffer_file, 'w') as outfile:
        json.dump(pm, outfile)
    try:
        import julia
    except ImportError:
        raise ImportError(
            "Please install pyjulia to run pandapower with PowerModels.jl")
    try:
        j = julia.Julia()
    except:
        raise UserWarning(
            "Could not connect to julia, please check that Julia is installed and pyjulia is correctly configured"
        )

    if julia_file is None:
        folder = os.path.join(pp_dir, "opf")
        julia_file = os.path.join(folder, 'run_powermodels.jl')
    try:
        run_powermodels = j.include(julia_file)
    except:
        raise UserWarning("File %s could not be imported" % julia_file)
    result_pm = run_powermodels(buffer_file)
    return result_pm
Esempio n. 11
0
    def __init__(
        self,
        n_features,  # number of features
        batch_size,  # number of simultaneous sims
        weights,  # reward weights, as a vector
        # NGSIM trajdata indeces, full set is [1,2,3,4,5,6]
        trajdata_indeces,
        max_nsteps=1000,
    ):

        self.tstep = 0
        self.max_nsteps = max_nsteps
        self.n_features = n_features

        # Load in functions
        self.j = julia.Julia()
        self.j.eval("include(\"" + auto2D_path + "\")")
        self.j.using("Auto2D")

        self.simparams = self.j.gen_simparams(trajdata_indeces, weights[0],
                                              weights[1], weights[2],
                                              weights[3], weights[4],
                                              weights[5], weights[6],
                                              batch_size)
        self.features = self.j.alloc_features(batch_size)

        if GX:
            _, self.ax = plt.subplots(1, 1)
Esempio n. 12
0
 def add_procs(procs_count):
     j = julia.Julia()
     j.eval('using Distributed')
     j.eval('addprocs(' + str(procs_count) + ')')
     j.eval('@everywhere using DPMMSubClusters')
     j.eval('@everywhere using LinearAlgebra')
     j.eval('@everywhere BLAS.set_num_threads(2)')
Esempio n. 13
0
def load_julia_with_Shearlab():
    """Function to load Shearlab."""
    # Importing base
    j = julia.Julia()
    j.eval('using Shearlab')
    j.eval('using PyPlot')
    j.eval('using Images')
    return j
Esempio n. 14
0
    def __init__(self):

        # Load in functions
        self._name_dump = 'julia(JuliaLQGEnv.LQG_path={})'.format(LQG_path)
        #debug = open('debug.log', 'a'); debug.write('{}\n'.format(self._name_dump)); debug.close()
        self.j = julia.Julia()
        self.j.eval("include(\"" + LQG_path + "\")")
        self.j.using("juliaLQG")
Esempio n. 15
0
def main():
	j = julia.Julia(); 
	j.include("julia_POMCP_Controller.jl");
	makeSolver = j.eval("makeSolver"); 

	[solver,pomdp,planner] = makeSolver();

	watch(j,solver,pomdp,planner); 
Esempio n. 16
0
    def __init__(self,
                 n_features,
                 trajdata_indeces,
                 train_seg_index=0,
                 frame_num=0,
                 save_history=False):

        self.t = 0.1

        self.tstep = 0
        self.max_nsteps = 1000
        self.n_features = n_features
        self.train_seg_index = train_seg_index
        self.frame_num = frame_num

        # Load in functions
        self._name_dump = 'julia(JuliaDriveEnv2D.auto2D_path={})'.format(
            auto2D_path)
        #debug = open('debug.log', 'a'); debug.write('{}\n'.format(self._name_dump)); debug.close()
        self.j = julia.Julia()
        self.j.eval("include(\"" + auto2D_path + "\")")
        self.j.using("Auto2D")

        #self.j.set_TRAJDATAS(tj_ix= tj_ix)
        #self.simparams = self.j.gen_simparams([1])
        ipdb.set_trace()
        if trajdata_indeces == []:
            print "USING PASSIVE/AGGRESSIVE"

            def append_path(x):
                return pulltraces_path + x

            trajdatas = [
                "trajdata_passive_aggressive1.txt",
                "trajdata_passive_aggressive2.txt"
            ]
            roadways = [
                "roadway_passive_aggressive.txt",
                "roadway_passive_aggressive.txt"
            ]

            # self.simparams= self.j.gen_simparams_from_trajdatas(map(append_path,trajdatas),map(append_path,roadways),
            # weights[0], weights[1], weights[2], weights[3], weights[4],
            # weights[5])
            ipdb.set_trace()
            self.simparams = self.j.gen_simparams_from_trajdatas(
                map(append_path, trajdatas), map(append_path, roadways),
                type_gru)

        else:
            #self.simparams = self.j.gen_simparams(trajdata_indeces, weights[0], weights[1], weights[2], weights[3], weights[4], weights[5])
            ipdb.set_trace()
            self.simparams = self.j.gen_simparams(trajdata_indeces, type_gru)

        self.features = self.j.alloc_features()

        if GX:
            _, self.ax = plt.subplots(1, 1)
Esempio n. 17
0
def get_statistics(simfile):
    jl = julia.Julia()
    jl.eval("using Mamba")
    jl.eval("include(\"utils.jl\")")
    jl.eval("include(\"../src/celerite.jl\")")
    if not jl.eval("@isdefined CeleriteDist"):
        jl.eval("eval(DefineCeleriteDist())")
    sim = jl.eval("sim = read(\"{0}\", ModelChains)".format(simfile))
    return jl.eval("summarystats(sim)")
    def crawl_data(self, script_name):
        """
        Runs a Julia script to crawl data.

        :param str script_name: Name of Julia script
        :return:
        """
        jul = julia.Julia(compiled_modules=False)
        jul.include(script_name)
Esempio n. 19
0
    def __init__(self):
        self.dt = 0.1

        # Load in functions
        self.j = julia.Julia()
        self.j.eval("include(\"" + auto1D_path + "\")")
        self.j.using("Auto1D")

        self.roadway = self.j.gen_stadium_roadway(1)  # one-lane track
Esempio n. 20
0
def get_autocor(simfile, lags):
    lags = iterable_to_string(lags)
    jl = julia.Julia()
    jl.eval("using Mamba")
    jl.eval("include(\"utils.jl\")")
    jl.eval("include(\"../src/celerite.jl\")")
    if not jl.eval("@isdefined CeleriteDist"):
        jl.eval("eval(DefineCeleriteDist())")
    sim = jl.eval("sim = read(\"{0}\", ModelChains)".format(simfile))
    return jl.eval("autocor(sim, lags={0})".format(lags))
Esempio n. 21
0
def task3(task1out, task2out):
    if (data_json['steps']['task3']['in']['files']['source']):
        if (data_json['steps']['task3']['in']['files']['script'] == 'julia'):
            j = julia.Julia()
            j.include(data_json['steps']['task3']['in']['files']['name'])
            r4 = j.include(data_json['steps']['task3']['in']['files']['name2'])
            outfile = j.filesmeth(task1out, task2out)
            return outfile
        else:
            return (print("Error in Task3"))
Esempio n. 22
0
def _call_pandamodels(buffer_file, julia_file, dev_mode):  # pragma: no cover

    try:
        import julia
        from julia import Main
        from julia import Pkg
        from julia import Base
    except ImportError:
        raise ImportError(
            "Please install pyjulia properly to run pandapower with PandaModels.jl."
        )

    try:
        julia.Julia()
    except:
        raise UserWarning(
            "Could not connect to julia, please check that Julia is installed and pyjulia is correctly configured"
        )

    if not Base.find_package("PandaModels"):
        logger.info(
            "PandaModels.jl is not installed in julia. It is added now!")
        Pkg.Registry.update()
        Pkg.add("PandaModels")

        if dev_mode:
            logger.info("installing dev mode is a slow process!")
            Pkg.resolve()
            Pkg.develop("PandaModels")
            # add pandamodels dependencies: slow process
            Pkg.instantiate()

        Pkg.build()
        Pkg.resolve()
        logger.info("Successfully added PandaModels")

    if dev_mode:
        Pkg.develop("PandaModels")
        Pkg.build()
        Pkg.resolve()
        Pkg.activate("PandaModels")

    try:
        Main.using("PandaModels")
    except ImportError:
        raise ImportError("cannot use PandaModels")

    Main.buffer_file = buffer_file
    result_pm = Main.eval(julia_file + "(buffer_file)")

    # if dev_mode:
    #     Pkg.activate()
    #     Pkg.free("PandaModels")
    #     Pkg.resolve()
    return result_pm
Esempio n. 23
0
    def __init__(self):
        self.dt = 0.1

        # Load in functions
        self._name_dump = 'julia(JuliaDriveEnv.auto1D_path={})'.format(
            auto1D_path)
        #debug = open('debug.log', 'a'); debug.write('{}\n'.format(self._name_dump)); debug.close()
        self.j = julia.Julia()
        self.j.eval("include(\"" + auto1D_path + "\")")
        self.j.using("Auto1D")

        self.roadway = self.j.gen_stadium_roadway(1)  # one-lane track
def test_julia_connection():
       
    try:
        import julia
    except:
        raise ImportError(
            "install pyjulia properlly to run PandaModels.jl")     
    try:
        julia.Julia()
    except:
        raise UserWarning(
            "cannot connect to julia, check pyjulia configuration")
Esempio n. 25
0
def get_sim(simfile):
    jl = julia.Julia()
    jl.eval("using Mamba")
    jl.eval("include(\"utils.jl\")")
    jl.eval("include(\"../src/celerite.jl\")")
    if not jl.eval("@isdefined CeleriteDist"):
        jl.eval("eval(DefineCeleriteDist())")
        #jl.eval(jl.DefineCeleriteDist())
    sim = jl.eval("sim = read(\"{0}\", ModelChains)".format(simfile))
    sim = jl.eval("sim.value")
    labels = jl.eval("sim.names")
    return sim, labels
Esempio n. 26
0
def make_julia():
    j = julia.Julia(
        make_mandelbrot(),
        canvas,
        allowed_keyevents=general_keys + [
            pygame.K_w,  # move julia constant up
            pygame.K_a,  # move julia constant left
            pygame.K_s,  # move julia constant down
            pygame.K_d,  # move julia constant right
        ])
    j.view.rectify()
    return j
Esempio n. 27
0
 def julia(self):
     if isinstance(self._julia, Exception):
         return None
     elif self._julia is None:
         try:
             self._julia = julia.Julia()
         except Exception as e:
             print(
                 "Creating julia.Julia raised an error - falling back to slower alternative."
             )
             self._julia = e
             return None
     return self._julia
Esempio n. 28
0
    def __init__(self, env_id, env_params, using):

        # initialize julia
        self.j = julia.Julia()
        self.j.eval('include(\"{}\")'.format(
            os.path.expanduser('~/.juliarc.jl')))
        self.j.using(using)

        # initialize environment
        self.env = self.j.make(env_id, env_params)
        self._observation_space = build_space(
            *self.j.observation_space_spec(self.env))
        self._action_space = build_space(*self.j.action_space_spec(self.env))
 def __init__(self,
              network=None,
              validation=None,
              selectedQueryMode=None,
              selectedPredictionMode=None,
              method='AptRank',
              param=dict()):
     '''
     Constructor:
     Calls the parent constructor
     '''
     if validation is None:
         self.network = network
         self.validation = validation
     else:
         try:
             method = method + str(param['diff_type'])
         except:
             method = method + '1'
         for k in param:
             if k == 'K' or k == 'S' or k == 'lowerBoundFactor':
                 method = method + '_' + str(k) + str(param[k])
         AlgorithmParent.__init__(
             self,
             method=method,
             network=network,
             validation=validation,
             selectedQueryMode=selectedQueryMode,
             selectedPredictionMode=selectedPredictionMode)
     self.j = julia.Julia()
     self.alpha = None
     # K            - the number of terms used in the APTRANK, default is 8
     self.K = 8
     # S            - the number of independent experiments during training,
     #                default is 5
     self.S = 5
     # ratio        - the split ratio between fiiting set and validation
     #                set, default is 0.8
     self.ratio = 0.5
     # diff_type    - choose what kind of diffusion matrix you want, 1 for G/rho,
     #               2 for G*D^{-1}, 3 for (D - G)/rho and 4 for (I - D^{-1/2}*G*D^{-1/2})/norm(L,1),
     #               where rho is the spectral radius and D is the out-degree of each
     #               vertex, defalut is 1
     self.diff_type = 1
     # sampling_type- 1 for randomly sampling using ratio, 2 for S-fold
     # cross validation, default is 1
     self.sampling_type = 1
     self.lowerBoundFactor = 2
     self.__dict__.update(param)
     self.lowerBound = 1.0 / ((self.K - 1)**self.lowerBoundFactor)
Esempio n. 30
0
    def __init__(self, env_dict = {}, n_egos = 1, z_dim = 0, normalize_obs = True, prior_type = "discrete",
            end_on_failure = True, index_features = False):
        self.j = julia.Julia()
        include_statement = "include(\"{}\")".format(AUTO2D_PATH)
        self.j.eval(include_statement)
        self.j.using("Auto2D")
        self.simparams = self.j.gen_simparams(env_dict)

        self.mix_class = env_dict["mix_class"]
        self.model_all = env_dict["model_all"]
        self.domain_indices = env_dict["domain_indices"]

        self.index_features = index_features

        self.z_dim = z_dim

        self._prior_f = None
        self._n_egos = n_egos

        self.prior_type = prior_type
        self.end_on_failure = end_on_failure
        # pull observation mean and std for normalization
        with h5py.File("{}/{}".format(PROJECT_PATH,normalizer_paths["ORIG"]),"r") as hf:
            self.obs_mean = \
                    np.repeat(hf['obs_mean'][...],self.n_egos)
            self.obs_std = \
                    np.repeat(hf['obs_std'][...],self.n_egos)

            self.act_mean = \
                    np.repeat(hf['act_mean'][...],self.n_egos)
            self.act_std = \
                    np.repeat(hf['act_std'][...], self.n_egos)

        if not normalize_obs:
            self.obs_mean = np.zeros_like(self.obs_mean)
            self.obs_std = np.ones_like(self.obs_std)

        # controls latent label
        if self.z_dim > 0:
            if prior_type == "standard": # standard gaussian prior
                self.z_mean = np.zeros(self.z_dim)[None,...]
                self.z_std = np.ones(self.z_dim)[None,...]
            elif prior_type == "discrete":
                self.z_mean, self.z_std = np.zeros(self.z_dim),np.zeros(self.z_dim)
        else:
            self.z = []

        obsdim = self.j.get_obsdim(self.simparams)
        _, self.ax = plt.subplots(1,1)
        plt.ion()