def _create_tables_dataset(args): file_source = args.get("fileSource") if file_source: AutoMLService.get().create_dataset_from_file( display_name=args["displayName"], file_name=file_source["name"], file_data=file_source["data"]) else: AutoMLService.get().create_dataset( display_name=args["displayName"], gcs_uri=args.get("gcsSource"), bigquery_uri=args.get("bigquerySource")) return {"success": True}
def _delete_model(args): AutoMLService.get().client.delete_model(args["modelId"]) return {"success": True}
def _delete_dataset(args): AutoMLService.get().client.delete_dataset(args["datasetId"]) return {"success": True}
def _table_info(args): return AutoMLService.get().get_table_specs(args["datasetId"])
def _list_models(args): return AutoMLService.get().get_models()
def _list_datasets(args): return AutoMLService.get().get_datasets()
def _get_pipeline(args): return AutoMLService.get().get_pipeline(args["pipelineId"])
def _list_model_evaluations(args): return AutoMLService.get().get_model_evaluation(args["modelId"])