Esempio n. 1
0
def test_linearity_step(fits_input):
    """Make sure the LinearityStep runs without error."""
    fname = fits_input[0].header['filename'].replace('.fits',
                                                     '_linearitystep.fits')
    LinearityStep.call(datamodels.open(fits_input),
                       output_file=fname,
                       save_results=True)
Esempio n. 2
0
def test_err_array():
    """Test that the error array is not changed by the linearity step"""

    # size of integration
    ngroups = 10
    xsize = 1032
    ysize = 1024

    # create a JWST datamodel for MIRI data
    im = RampModel((1, ngroups, ysize, xsize))
    im.data += 1
    im.err += 2
    # set file header values
    im.meta.instrument.detector = 'MIRIMAGE'
    im.meta.instrument.name = 'MIRI'
    im.meta.observation.date = '2018-01-01'
    im.meta.observation.time = '00:00:00'
    im.meta.subarray.xstart = 1
    im.meta.subarray.xsize = xsize
    im.meta.subarray.ystart = 1
    im.meta.subarray.ysize = ysize

    # run pipeline
    outfile = LinearityStep.call(im)

    # check output of error array
    # test that the science data are not changed
    np.testing.assert_allclose(im.err, outfile.err)
Esempio n. 3
0
def test_err_array():
    """Test that the error array is not changed by the linearity step"""

    # size of integration
    ngroups = 10
    xsize = 1032
    ysize = 1024

    # create a JWST datamodel for MIRI data
    im = MIRIRampModel((1, ngroups, ysize, xsize))
    im.data += 1
    im.err += 2
    # set file header values
    im.meta.instrument.detector = 'MIRIMAGE'
    im.meta.instrument.name = 'MIRI'
    im.meta.observation.date = '2018-01-01'
    im.meta.observation.time = '00:00:00'
    im.meta.subarray.xstart = 1
    im.meta.subarray.xsize = xsize
    im.meta.subarray.ystart = 1
    im.meta.subarray.ysize = ysize

    # run pipeline
    outfile = LinearityStep.call(im)

    # check output of error array
    # test that the science data are not changed
    np.testing.assert_allclose(im.err, outfile.err)
Esempio n. 4
0
    def run_jump_step(self, infile, threshold, run_steps):
        '''Function to run the jump detection step.'''

        # output file name
        out = infile[:-5] + "_jump_CRthresh" + str(threshold) + ".fits"

        # if run_steps, run all steps prior to jump
        if run_steps:

            m = DQInitStep.call(infile)
            m = SaturationStep.call(m)
            m = SuperBiasStep.call(m)
            m_ref = RefPixStep.call(m, config_file='refpix.cfg')
            m_lin = LinearityStep.call(m)
            m_dark = DarkCurrentStep.call(m)

            # if threshold is given, use that rejection threshold
            if threshold is not None:
                m = JumpStep.call(m,
                                  output_file=out,
                                  rejection_threshold=threshold)
            else:
                m = JumpStep.call(m, output_file=out)

        # else, run only jump_step
        else:
            if threshold is not None:
                m = JumpStep.call(infile,
                                  output_file=out,
                                  rejection_threshold=threshold)
            else:
                m = JumpStep.call(infile, output_file=out)

        return m
Esempio n. 5
0
def test_err_array():
    """test that the error array is not changed by the linearity step"""

    # size of integration
    ngroups = 20
    xsize = 1032
    ysize = 1024

    # create the data and groupdq arrays
    csize = (1, ngroups, ysize, xsize)
    data = np.full(csize, 1.0)
    pixeldq = np.zeros((ysize, xsize), dtype=int)
    groupdq = np.zeros(csize, dtype=int)
    err = np.full(csize, 2.0)

    # create a JWST datamodel for MIRI data
    im = MIRIRampModel(data=data, pixeldq=pixeldq, groupdq=groupdq, err=err)
    # set file header values
    im.meta.instrument.detector = 'MIRIMAGE'
    im.meta.instrument.name = 'MIRI'
    im.meta.observation.date = '2018-01-01'
    im.meta.observation.time = '00:00:00'
    im.meta.subarray.xstart = 1
    im.meta.subarray.xsize = xsize
    im.meta.subarray.ystart = 1
    im.meta.subarray.ysize = ysize

    # run pipeline
    outfile = LinearityStep.call(im)

    # check output of error array
    # test that the science data are not changed

    np.testing.assert_array_equal(np.full(csize, 2.0, dtype=float),
                                  outfile.err, err_msg='no changes should be seen in array ')
Esempio n. 6
0
    def test_linearity_miri3(self):
        """
        Regression test of linearity step performed on MIRI data.
        """
        input_file = self.get_data(self.test_dir,
                                    'jw00001001001_01109_00001_MIRIMAGE_dark_current.fits')
        # get supplemental input
        override_file = self.get_data(self.test_dir,
                                      "lin_nan_flag_miri.fits")
        # run calibration step
        result = LinearityStep.call(input_file,
                           override_linearity=override_file)

        output_file = result.meta.filename
        result.save(output_file)
        result.close()

        outputs = [(output_file,
                    'jw00001001001_01109_00001_MIRIMAGE_linearity.fits') ]
        self.compare_outputs(outputs)
Esempio n. 7
0
    def test_linearity_miri3(self):
        """
        Regression test of linearity step performed on MIRI data.
        """
        input_file = self.get_data(
            self.test_dir,
            'jw00001001001_01109_00001_MIRIMAGE_dark_current.fits')
        # get supplemental input
        override_file = self.get_data(self.test_dir, "lin_nan_flag_miri.fits")
        # run calibration step
        result = LinearityStep.call(input_file,
                                    override_linearity=override_file)

        output_file = result.meta.filename
        result.save(output_file)
        result.close()

        outputs = [(output_file,
                    'jw00001001001_01109_00001_MIRIMAGE_linearity.fits')]
        self.compare_outputs(outputs)
Esempio n. 8
0
def test_saturation():
    """Check that correction is not applied for groups flagged as SATURATED in GROUPDQ"""

    # size of integration
    nints = 1
    ngroups = 16
    xsize = 1032
    ysize = 1024

    # create a JWST datamodel for MIRI data
    im = make_rampmodel(nints, ngroups, ysize, xsize)
    im.meta.instrument.detector = 'MIRIMAGE'

    # set groupdq pixels to saturated
    im.groupdq[0, 10:, 200, 150] = dqflags.pixel['SATURATED']  # saturated dq flag
    im.data[0, 15, 200, 150] = 1000.0  # value shouldn't change

    # run through Linearity pipeline
    outfile = LinearityStep.call(im)

    assert(outfile.data[0, 15, 200, 150] == 1000.0)  # pixel flagged as saturated, shouldn't change
Esempio n. 9
0
def test_saturation():
    """Check that correction is not applied for groups flagged as SATURATED in GROUPDQ"""

    # size of integration
    nints = 1
    ngroups = 160
    xsize = 1032
    ysize = 1024

    # create a JWST datamodel for MIRI data
    im = make_rampmodel(nints, ngroups, ysize, xsize)
    im.meta.instrument.detector = 'MIRIMAGE'

    # set groupdq pixels to saturated
    im.groupdq[0, 100:, 200, 150] = dqflags.pixel['SATURATED']  # saturated dq flag
    im.data[0, 150, 200, 150] = 1000.0  # value shouldn't change

    # run through Linearity pipeline
    outfile = LinearityStep.call(im)

    assert(outfile.data[0, 150, 200, 150] == 1000.0)  # pixel flagged as saturated, shouldn't change
Esempio n. 10
0
        if len(line) > 3:
            files.append(line.strip())

#assume they've been run thru bpm and saturation
#so now do superbias subtraction, refpix corr,
#linearity corr, jump step

#hardwire for A1 at the moment:
reffile_dir = '/ifs/jwst/wit/witserv/data7/nrc/reference_files/SSB/CV3/cv3_reffile_conversion/'
sbfile = '/ifs/jwst/wit/witserv/data4/nrc/hilbert/superbias/cv3/A1/A1_superbias_from_list_of_biasfiles.list.fits'
linfile = reffile_dir + 'linearity/NRCA1_17004_LinearityCoeff_ADU0_2016-05-14_ssblinearity_DMSorient.fits'
gainfile = reffile_dir + 'gain/NRCA1_17004_Gain_ISIMCV3_2016-01-23_ssbgain_DMSorient.fits'
ronfile = '/grp/jwst/wit/nircam/reference_files/SSB/CV2/delivery_Dec_2015/Read_Noise/NRCA1_16989_CDSNoise_2014-10-24_ssbreadnoise_DMSorient.fits'

for file in files:
    sbout = file[0:-5] + '_superbias.fits'
    data = SuperBiasStep.call(file,
                              override_superbias=sbfile,
                              output_file=sbout)
    refout = sbout[0:-5] + '_refpix.fits'
    data = RefPixStep.call(data, output_file=refout)
    linout = refout[0:-5] + '_linearity.fits'
    data = LinearityStep.call(data,
                              override_linearity=linfile,
                              output_file=linout)
    jumpout = linout[0:-5] + '_jump.fits'
    data = JumpStep.call(data,
                         override_gain=gainfile,
                         override_readnoise=ronfile,
                         output_file=jumpout)
Esempio n. 11
0
    def linearize_dark(self, darkobj):
        """Beginning with the input dark current ramp, run the dq_init, saturation, superbias
        subtraction, refpix and nonlin pipeline steps in order to produce a linearized
        version of the ramp. This will be used when combining the dark ramp with the
        simulated signal ramp.

        Parameters
        -----------
        darkobj : obj
            Instance of read_fits class containing dark current data and info

        Returns
        -------
        linDarkObj : obj
            Modified read_fits instance with linearized dark current data
        """
        from jwst.dq_init import DQInitStep
        from jwst.saturation import SaturationStep
        from jwst.superbias import SuperBiasStep
        from jwst.refpix import RefPixStep
        from jwst.linearity import LinearityStep

        # First we need to place the read_fits object into a RampModel instance
        if self.runStep['linearized_darkfile']:
            subfile = self.params['Reffiles']['linearized_darkfile']
        else:
            subfile = self.params['Reffiles']['dark']
        dark = darkobj.insert_into_datamodel(subfile)

        print('Creating a linearized version of the dark current input ramp')
        print('using JWST calibration pipeline.')

        # Run the DQ_Init step
        if self.runStep['badpixmask']:
            linDark = DQInitStep.call(dark,
                                      config_file=self.params['newRamp']['dq_configfile'],
                                      override_mask=self.params['Reffiles']['badpixmask'])
        else:
            linDark = DQInitStep.call(dark, config_file=self.params['newRamp']['dq_configfile'])

        # If the saturation map is provided, use it. If not, default to whatever is in CRDS
        if self.runStep['saturation_lin_limit']:
            linDark = SaturationStep.call(linDark,
                                          config_file=self.params['newRamp']['sat_configfile'],
                                          override_saturation=self.params['Reffiles']['saturation'])
        else:
            linDark = SaturationStep.call(linDark,
                                          config_file=self.params['newRamp']['sat_configfile'])

        # If the superbias file is provided, use it. If not, default to whatever is in CRDS
        if self.runStep['superbias']:
            linDark = SuperBiasStep.call(linDark,
                                         config_file=self.params['newRamp']['superbias_configfile'],
                                         override_superbias=self.params['Reffiles']['superbias'])
        else:
            linDark = SuperBiasStep.call(linDark,
                                         config_file=self.params['newRamp']['superbias_configfile'])

        # Reference pixel correction
        linDark = RefPixStep.call(linDark,
                                  config_file=self.params['newRamp']['refpix_configfile'])

        # Save a copy of the superbias- and reference pixel-subtracted
        # dark. This will be used later to add these effects back in
        # after the synthetic signals have been added and the non-linearity
        # effects are added back in when using the PROPER combine method.
        sbAndRefpixEffects = dark.data - linDark.data

        # Linearity correction - save the output so that you won't need to
        # re-run the pipeline when using the same dark current file in the
        # future. Use the linearity coefficient file if provided
        base_name = self.params['Output']['file'].split('/')[-1]
        linearoutfile = base_name[0:-5] + '_linearized_dark_current_ramp.fits'
        linearoutfile = os.path.join(self.params['Output']['directory'], linearoutfile)
        if self.runStep['linearity']:
            linDark = LinearityStep.call(linDark,
                                         config_file=self.params['newRamp']['linear_configfile'],
                                         override_linearity=self.params['Reffiles']['linearity'],
                                         output_file=linearoutfile)
        else:
            linDark = LinearityStep.call(linDark,
                                         config_file=self.params['newRamp']['linear_configfile'],
                                         output_file=linearoutfile)

        print(("Linearized dark (output directly from pipeline saved as {}"
               .format(linearoutfile)))

        # Now we need to put the data back into a read_fits object
        linDarkobj = read_fits.Read_fits()
        linDarkobj.model = linDark
        linDarkobj.rampmodel_to_obj()
        linDarkobj.sbAndRefpix = sbAndRefpixEffects

        return linDarkobj
def test_linearity_step(fits_input):
    """Make sure the LinearityStep runs without error."""

    LinearityStep.call(datamodels.open(fits_input), save_results=True)
    det = det.lower()[3:]
    if 'long' in det:
        det = det[0] + '5'
    refdict = reffiles[det]

    #m = calwebb_detector1.Detector1Pipeline(config_file='calwebb_detector1.cfg')
    #m.saturation.override_saturation = satdir+refdict['saturation']
    #m.superbias.override_superbias = sbdir+refdict['superbias']
    #m.refpix.odd_even_rows = False
    #m.group_scale.skip = True
    #m.ipc.skip = True
    #m.rscd.skip = True
    #m.lastframe.skip = True
    #m.dark_current.skip = True
    #m.persistence.skip = True
    #m.jump.skip = True
    #m.ramp_fit.skip = False #bug in pipeline means this must
    #be run. 
    #m.linearity.override_linearity = lindir+refdict['linearity']
    #m.output_file = outfile
    #m.run(file)

    m = DQInitStep.call(file,config_file = 'dq_init.cfg')
    m = SaturationStep.call(m,config_file = 'saturation.cfg')
    m = SuperBiasStep.call(m,config_file = 'superbias.cfg')
    m = RefPixStep.call(m,config_file='refpix.cfg')
    m = LinearityStep.call(m,config_file='linearity.cfg',output_file = outfile)