pull = get_column(num_sql_columns) if is_op(query_edge.value, TupleOp): query_edge.allowNulls = False push_child = column_index num_push_columns = len(query_edge.value.terms) else: push_child = "." num_push_columns = None index_to_column[num_sql_columns] = ColumnMapping( is_edge=True, push_name=query_edge.name, push_column_name=query_edge.name, push_column=edge_index, num_push_columns=num_push_columns, push_child=push_child, # CAN NOT HANDLE TUPLES IN COLUMN pull=pull, sql=sql, type=sql_type_to_json_type[sql_type], column_alias=sql_name) vals = [v for t, v in edge_values] if query_edge.domain.type == "set": domain_name = "d" + text(edge_index) + "c" + text(column_index) domain_names = [domain_name] if len(edge_names) > 1: Log.error("Do not know how to handle") if query_edge.value: domain = SQL_UNION_ALL.join( SQL_SELECT + sql_alias(
def _set_op(self, query): # GET LIST OF SELECTED COLUMNS vars_ = UNION([ v.var for select in listwrap(query.select) for v in select.value.vars() ]) schema = self.schema known_vars = schema.keys() active_columns = {".": set()} for v in vars_: for c in schema.leaves(v): nest = c.nested_path[0] active_columns.setdefault(nest, set()).add(c) # ANY VARS MENTIONED WITH NO COLUMNS? for v in vars_: if not any(startswith_field(cname, v) for cname in known_vars): active_columns["."].add( Column(name=v, jx_type=IS_NULL, es_column=".", es_index=".", es_type='NULL', nested_path=["."], last_updated=Date.now())) # EVERY COLUMN, AND THE INDEX IT TAKES UP index_to_column = {} # MAP FROM INDEX TO COLUMN (OR SELECT CLAUSE) index_to_uid = {} # FROM NESTED PATH TO THE INDEX OF UID sql_selects = [ ] # EVERY SELECT CLAUSE (NOT TO BE USED ON ALL TABLES, OF COURSE) nest_to_alias = { nested_path[0]: "__" + unichr(ord('a') + i) + "__" for i, nested_path in enumerate(self.snowflake.query_paths) } sorts = [] if query.sort: for select in query.sort: col = SQLang[select.value].to_sql(schema)[0] for t, sql in col.sql.items(): json_type = sql_type_to_json_type[t] if json_type in STRUCT: continue column_number = len(sql_selects) # SQL HAS ABS TABLE REFERENCE column_alias = _make_column_name(column_number) sql_selects.append(sql_alias(sql, column_alias)) if select.sort == -1: sorts.append(quote_column(column_alias) + SQL_IS_NULL) sorts.append(quote_column(column_alias) + " DESC") else: sorts.append(quote_column(column_alias) + SQL_IS_NULL) sorts.append(quote_column(column_alias)) primary_doc_details = Data() # EVERY SELECT STATEMENT THAT WILL BE REQUIRED, NO MATTER THE DEPTH # WE WILL CREATE THEM ACCORDING TO THE DEPTH REQUIRED nested_path = [] for step, sub_table in self.snowflake.tables: nested_path.insert(0, step) nested_doc_details = { "sub_table": sub_table, "children": [], "index_to_column": {}, "nested_path": nested_path } # INSERT INTO TREE if not primary_doc_details: primary_doc_details = nested_doc_details else: def place(parent_doc_details): if startswith_field(step, parent_doc_details['nested_path'][0]): for c in parent_doc_details['children']: if place(c): return True parent_doc_details['children'].append( nested_doc_details) place(primary_doc_details) alias = nested_doc_details['alias'] = nest_to_alias[step] # WE ALWAYS ADD THE UID column_number = index_to_uid[step] = nested_doc_details[ 'id_coord'] = len(sql_selects) sql_select = quote_column(alias, UID) sql_selects.append( sql_alias(sql_select, _make_column_name(column_number))) if step != ".": # ID AND ORDER FOR CHILD TABLES index_to_column[column_number] = ColumnMapping( sql=sql_select, type="number", nested_path=nested_path, column_alias=_make_column_name(column_number)) column_number = len(sql_selects) sql_select = quote_column(alias, ORDER) sql_selects.append( sql_alias(sql_select, _make_column_name(column_number))) index_to_column[column_number] = ColumnMapping( sql=sql_select, type="number", nested_path=nested_path, column_alias=_make_column_name(column_number)) # WE DO NOT NEED DATA FROM TABLES WE REQUEST NOTHING FROM if step not in active_columns: continue # ADD SQL SELECT COLUMNS FOR EACH jx SELECT CLAUSE si = 0 for select in listwrap(query.select): try: column_number = len(sql_selects) select.pull = get_column(column_number) db_columns = SQLang[select.value].partial_eval().to_sql( schema) for column in db_columns: for t, unsorted_sql in column.sql.items(): json_type = sql_type_to_json_type[t] if json_type in STRUCT: continue column_number = len(sql_selects) column_alias = _make_column_name(column_number) sql_selects.append( sql_alias(unsorted_sql, column_alias)) if startswith_field(schema.path, step) and is_op( select.value, LeavesOp): # ONLY FLATTEN primary_nested_path AND PARENTS, NOT CHILDREN index_to_column[ column_number] = nested_doc_details[ 'index_to_column'][ column_number] = ColumnMapping( push_name=literal_field( get_property_name( concat_field( select.name, column.name))), push_child=".", push_column_name= get_property_name( concat_field( select.name, column.name)), push_column=si, pull=get_column(column_number), sql=unsorted_sql, type=json_type, column_alias=column_alias, nested_path=nested_path) si += 1 else: index_to_column[ column_number] = nested_doc_details[ 'index_to_column'][ column_number] = ColumnMapping( push_name=select.name, push_child=column.name, push_column_name=select.name, push_column=si, pull=get_column(column_number), sql=unsorted_sql, type=json_type, column_alias=column_alias, nested_path=nested_path) finally: si += 1 where_clause = BooleanOp(query.where).partial_eval().to_sql( schema, boolean=True)[0].sql.b unsorted_sql = self._make_sql_for_one_nest_in_set_op( ".", sql_selects, where_clause, active_columns, index_to_column) for n, _ in self.snowflake.tables: sorts.append(quote_column(COLUMN + text(index_to_uid[n]))) ordered_sql = ConcatSQL( (SQL_SELECT, SQL_STAR, SQL_FROM, sql_iso(unsorted_sql), SQL_ORDERBY, sql_list(sorts), SQL_LIMIT, quote_value(query.limit))) result = self.db.query(ordered_sql) def _accumulate_nested(rows, row, nested_doc_details, parent_doc_id, parent_id_coord): """ :param rows: REVERSED STACK OF ROWS (WITH push() AND pop()) :param row: CURRENT ROW BEING EXTRACTED :param nested_doc_details: { "nested_path": wrap_nested_path(nested_path), "index_to_column": map from column number to column details "children": all possible direct decedents' nested_doc_details } :param parent_doc_id: the id of the parent doc (for detecting when to step out of loop) :param parent_id_coord: the column number for the parent id (so we ca extract from each row) :return: the nested property (usually an array) """ previous_doc_id = None doc = Null output = [] id_coord = nested_doc_details['id_coord'] while True: doc_id = row[id_coord] if doc_id == None or (parent_id_coord is not None and row[parent_id_coord] != parent_doc_id): rows.append( row ) # UNDO PREVIOUS POP (RECORD IS NOT A NESTED RECORD OF parent_doc) return output if doc_id != previous_doc_id: previous_doc_id = doc_id doc = Null curr_nested_path = nested_doc_details['nested_path'][0] index_to_column = nested_doc_details[ 'index_to_column'].items() for i, c in index_to_column: value = row[i] if is_list(query.select) or is_op( query.select.value, LeavesOp): # ASSIGN INNER PROPERTIES relative_field = concat_field( c.push_name, c.push_child) else: # FACT IS EXPECTED TO BE A SINGLE VALUE, NOT AN OBJECT relative_field = c.push_child if relative_field == ".": if exists(value): doc = value elif exists(value): if doc is Null: doc = Data() doc[relative_field] = value for child_details in nested_doc_details['children']: # EACH NESTED TABLE MUST BE ASSEMBLED INTO A LIST OF OBJECTS child_id = row[child_details['id_coord']] if child_id is not None: nested_value = _accumulate_nested( rows, row, child_details, doc_id, id_coord) if nested_value != None: push_name = child_details['nested_path'][0] if is_list(query.select) or is_op( query.select.value, LeavesOp): # ASSIGN INNER PROPERTIES relative_field = relative_field( push_name, curr_nested_path) else: # FACT IS EXPECTED TO BE A SINGLE VALUE, NOT AN OBJECT relative_field = "." if relative_field == ".": doc = unwraplist(nested_value) else: doc[relative_field] = unwraplist(nested_value) output.append(doc) try: row = rows.pop() except IndexError: return output cols = tuple( [i for i in index_to_column.values() if i.push_name != None]) rows = list(reversed(unwrap(result.data))) if rows: row = rows.pop() data = _accumulate_nested(rows, row, primary_doc_details, None, None) else: data = result.data if query.format == "cube": # for f, full_name in self.snowflake.tables: # if f != '.' or (test_dots(cols) and is_list(query.select)): # num_rows = len(result.data) # num_cols = MAX([c.push_column for c in cols]) + 1 if len(cols) else 0 # map_index_to_name = {c.push_column: c.push_column_name for c in cols} # temp_data = [[None] * num_rows for _ in range(num_cols)] # for rownum, d in enumerate(result.data): # for c in cols: # if c.push_child == ".": # temp_data[c.push_column][rownum] = c.pull(d) # else: # column = temp_data[c.push_column][rownum] # if column is None: # column = temp_data[c.push_column][rownum] = {} # column[c.push_child] = c.pull(d) # output = Data( # meta={"format": "cube"}, # data={n: temp_data[c] for c, n in map_index_to_name.items()}, # edges=[{ # "name": "rownum", # "domain": { # "type": "rownum", # "min": 0, # "max": num_rows, # "interval": 1 # } # }] # ) # return output if is_list(query.select) or is_op(query.select.value, LeavesOp): num_rows = len(data) temp_data = { c.push_column_name: [None] * num_rows for c in cols } for rownum, d in enumerate(data): for c in cols: temp_data[c.push_column_name][rownum] = d[c.push_name] return Data(meta={"format": "cube"}, data=temp_data, edges=[{ "name": "rownum", "domain": { "type": "rownum", "min": 0, "max": num_rows, "interval": 1 } }]) else: num_rows = len(data) map_index_to_name = { c.push_column: c.push_column_name for c in cols } temp_data = [data] return Data(meta={"format": "cube"}, data={ n: temp_data[c] for c, n in map_index_to_name.items() }, edges=[{ "name": "rownum", "domain": { "type": "rownum", "min": 0, "max": num_rows, "interval": 1 } }]) elif query.format == "table": # for f, _ in self.snowflake.tables: # if frum.endswith(f): # num_column = MAX([c.push_column for c in cols]) + 1 # header = [None] * num_column # for c in cols: # header[c.push_column] = c.push_column_name # # output_data = [] # for d in result.data: # row = [None] * num_column # for c in cols: # set_column(row, c.push_column, c.push_child, c.pull(d)) # output_data.append(row) # # return Data( # meta={"format": "table"}, # header=header, # data=output_data # ) if is_list(query.select) or is_op(query.select.value, LeavesOp): column_names = [None] * (max(c.push_column for c in cols) + 1) for c in cols: column_names[c.push_column] = c.push_column_name temp_data = [] for rownum, d in enumerate(data): row = [None] * len(column_names) for c in cols: row[c.push_column] = d[c.push_name] temp_data.append(row) return Data(meta={"format": "table"}, header=column_names, data=temp_data) else: column_names = listwrap(query.select).name return Data(meta={"format": "table"}, header=column_names, data=[[d] for d in data]) else: # for f, _ in self.snowflake.tables: # if frum.endswith(f) or (test_dots(cols) and is_list(query.select)): # data = [] # for d in result.data: # row = Data() # for c in cols: # if c.push_child == ".": # row[c.push_name] = c.pull(d) # elif c.num_push_columns: # tuple_value = row[c.push_name] # if not tuple_value: # tuple_value = row[c.push_name] = [None] * c.num_push_columns # tuple_value[c.push_child] = c.pull(d) # else: # row[c.push_name][c.push_child] = c.pull(d) # # data.append(row) # # return Data( # meta={"format": "list"}, # data=data # ) if is_list(query.select) or is_op(query.select.value, LeavesOp): temp_data = [] for rownum, d in enumerate(data): row = {} for c in cols: row[c.push_column_name] = d[c.push_name] temp_data.append(row) return Data(meta={"format": "list"}, data=temp_data) else: return Data(meta={"format": "list"}, data=data)
def _set_op(self, query, frum): # GET LIST OF COLUMNS frum_path = split_field(frum) primary_nested_path = join_field(frum_path[1:]) vars_ = UNION([s.value.vars() for s in listwrap(query.select)]) schema = self.sf.tables[primary_nested_path].schema nest_to_alias = { nested_path: "__" + unichr(ord('a') + i) + "__" for i, (nested_path, sub_table) in enumerate(self.sf.tables.items()) } active_columns = {".": []} for cname, cols in schema.items(): if any(startswith_field(cname, v) for v in vars_): for c in cols: if c.type in STRUCT: continue nest = c.nested_path[0] active = active_columns.get(nest) if not active: active = active_columns[nest] = [] active.append(c) for nested_path, s in self.sf.tables.items(): for cname, cols in s.schema.items(): if not any(startswith_field(cname, c.names[c.nested_path[0]]) for n, cc in active_columns.items() for c in cc): for c in cols: if c.type in STRUCT: continue nest = c.nested_path[0] active = active_columns.get(nest) if not active: active = active_columns[nest] = [] active.append(c) # ANY VARS MENTIONED WITH NO COLUMNS? for v in vars_: if not any(startswith_field(cname, v) for cname in schema.keys()): active_columns["."].append(Column( names={".": v}, type="null", es_column=".", es_index=".", nested_path=["."] )) # EVERY COLUMN, AND THE INDEX IT TAKES UP index_to_column = {} # MAP FROM INDEX TO COLUMN (OR SELECT CLAUSE) index_to_uid = {} # FROM NESTED PATH TO THE INDEX OF UID sql_selects = [] # EVERY SELECT CLAUSE (NOT TO BE USED ON ALL TABLES, OF COURSE) nest_to_alias = { nested_path: "__" + unichr(ord('a') + i) + "__" for i, (nested_path, sub_table) in enumerate(self.sf.tables.items()) } sorts = [] if query.sort: for s in query.sort: col = s.value.to_sql(schema)[0] for t, sql in col.sql.items(): json_type = sql_type_to_json_type[t] if json_type in STRUCT: continue column_number = len(sql_selects) # SQL HAS ABS TABLE REFERENCE column_alias = _make_column_name(column_number) sql_selects.append(sql + " AS " + column_alias) if s.sort == -1: sorts.append(column_alias + " IS NOT NULL") sorts.append(column_alias + " DESC") else: sorts.append(column_alias + " IS NULL") sorts.append(column_alias) selects = [] primary_doc_details = Data() # EVERY SELECT STATEMENT THAT WILL BE REQUIRED, NO MATTER THE DEPTH # WE WILL CREATE THEM ACCORDING TO THE DEPTH REQUIRED for nested_path, sub_table in self.sf.tables.items(): nested_doc_details = { "sub_table": sub_table, "children": [], "index_to_column": {}, "nested_path": [nested_path] # fake the real nested path, we only look at [0] anyway } # INSERT INTO TREE if not primary_doc_details: primary_doc_details = nested_doc_details else: def place(parent_doc_details): if startswith_field(nested_path, parent_doc_details['nested_path'][0]): for c in parent_doc_details['children']: if place(c): return True parent_doc_details['children'].append(nested_doc_details) place(primary_doc_details) alias = nested_doc_details['alias'] = nest_to_alias[nested_path] if nested_path=="." and quoted_GUID in vars_: column_number = index_to_uid[nested_path] = nested_doc_details['id_coord'] = len(sql_selects) sql_select = alias + "." + quoted_GUID sql_selects.append(sql_select + " AS " + _make_column_name(column_number)) index_to_column[column_number] = nested_doc_details['index_to_column'][column_number] = ColumnMapping( push_name="_id", push_column_name="_id", push_column=0, push_child=".", sql=sql_select, pull=get_column(column_number), type="string", column_alias=_make_column_name(column_number), nested_path=[nested_path] # fake the real nested path, we only look at [0] anyway ) query.select = [s for s in listwrap(query.select) if s.name!="_id"] # WE ALWAYS ADD THE UID AND ORDER column_number = index_to_uid[nested_path] = nested_doc_details['id_coord'] = len(sql_selects) sql_select = alias + "." + quoted_UID sql_selects.append(sql_select + " AS " + _make_column_name(column_number)) if nested_path !=".": index_to_column[column_number]=ColumnMapping( sql=sql_select, type="number", nested_path=[nested_path], # fake the real nested path, we only look at [0] anyway column_alias=_make_column_name(column_number) ) column_number = len(sql_selects) sql_select = alias + "." + quote_table(ORDER) sql_selects.append(sql_select + " AS " + _make_column_name(column_number)) index_to_column[column_number]=ColumnMapping( sql=sql_select, type="number", nested_path=[nested_path], # fake the real nested path, we only look at [0] anyway column_alias=_make_column_name(column_number) ) # WE DO NOT NEED DATA FROM TABLES WE REQUEST NOTHING FROM if nested_path not in active_columns: continue if len(active_columns[nested_path]) != 0: # ADD SQL SELECT COLUMNS FOR EACH jx SELECT CLAUSE si = 0 for s in listwrap(query.select): try: column_number = len(sql_selects) s.pull = get_column(column_number) db_columns = s.value.to_sql(schema) if isinstance(s.value, LeavesOp): for column in db_columns: if isinstance(column.nested_path, list): column.nested_path=column.nested_path[0] if column.nested_path and column.nested_path!=nested_path: continue for t, unsorted_sql in column.sql.items(): json_type = sql_type_to_json_type[t] if json_type in STRUCT: continue column_number = len(sql_selects) # SQL HAS ABS TABLE REFERENCE column_alias = _make_column_name(column_number) if concat_field(alias, unsorted_sql) in selects and len(unsorted_sql.split())==1: continue selects.append(concat_field(alias, unsorted_sql)) sql_selects.append(alias + "." + unsorted_sql + " AS " + column_alias) index_to_column[column_number] = nested_doc_details['index_to_column'][column_number] = ColumnMapping( push_name=literal_field(get_property_name(concat_field(s.name, column.name))), push_column_name=get_property_name(concat_field(s.name, column.name)), push_column=si, push_child=".", pull=get_column(column_number), sql=unsorted_sql, type=json_type, column_alias=column_alias, nested_path=[nested_path] # fake the real nested path, we only look at [0] anyway ) si += 1 else: for column in db_columns: if isinstance(column.nested_path, list): column.nested_path=column.nested_path[0] if column.nested_path and column.nested_path!=nested_path: continue for t, unsorted_sql in column.sql.items(): json_type = sql_type_to_json_type[t] if json_type in STRUCT: continue column_number = len(sql_selects) # SQL HAS ABS TABLE REFERENCE column_alias = _make_column_name(column_number) if concat_field(alias, unsorted_sql) in selects and len(unsorted_sql.split())==1: continue selects.append(concat_field(alias, unsorted_sql)) sql_selects.append(alias + "." + unsorted_sql + " AS " + column_alias) index_to_column[column_number] = nested_doc_details['index_to_column'][column_number] = ColumnMapping( push_name=s.name, push_column_name=s.name, push_column=si, push_child=column.name, pull=get_column(column_number), sql=unsorted_sql, type=json_type, column_alias=column_alias, nested_path=[nested_path] # fake the real nested path, we only look at [0] anyway ) finally: si += 1 elif startswith_field(nested_path, primary_nested_path): # ADD REQUIRED COLUMNS, FOR DEEP STUFF for ci, c in enumerate(active_columns[nested_path]): if c.type in STRUCT: continue column_number = len(sql_selects) nested_path = c.nested_path unsorted_sql = nest_to_alias[nested_path[0]] + "." + quote_table(c.es_column) column_alias = _make_column_name(column_number) if concat_field(alias, unsorted_sql) in selects and len(unsorted_sql.split())==1: continue selects.append(concat_field(alias, unsorted_sql)) sql_selects.append(alias + "." + unsorted_sql + " AS " + column_alias) index_to_column[column_number] = nested_doc_details['index_to_column'][column_number] = ColumnMapping( push_name=s.name, push_column_name=s.name, push_column=si, push_child=relative_field(c.names["."], s.name), pull=get_column(column_number), sql=unsorted_sql, type=c.type, column_alias=column_alias, nested_path=nested_path ) where_clause = query.where.to_sql(schema, boolean=True)[0].sql.b unsorted_sql = self._make_sql_for_one_nest_in_set_op( ".", sql_selects, where_clause, active_columns, index_to_column ) for n, _ in self.sf.tables.items(): sorts.append(COLUMN + text_type(index_to_uid[n])) ordered_sql = ( "SELECT * FROM (\n" + unsorted_sql + "\n)" + "\nORDER BY\n" + ",\n".join(sorts) + "\nLIMIT " + quote_value(query.limit) ) self.db.create_new_functions() #creating new functions: regexp result = self.db.query(ordered_sql) def _accumulate_nested(rows, row, nested_doc_details, parent_doc_id, parent_id_coord): """ :param rows: REVERSED STACK OF ROWS (WITH push() AND pop()) :param row: CURRENT ROW BEING EXTRACTED :param nested_doc_details: { "nested_path": wrap_nested_path(nested_path), "index_to_column": map from column number to column details "children": all possible direct decedents' nested_doc_details } :param parent_doc_id: the id of the parent doc (for detecting when to step out of loop) :param parent_id_coord: the column number for the parent id (so we ca extract from each row) :return: the nested property (usually an array) """ previous_doc_id = None doc = Null output = [] id_coord = nested_doc_details['id_coord'] while True: doc_id = row[id_coord] if doc_id == None or (parent_id_coord is not None and row[parent_id_coord] != parent_doc_id): rows.append(row) # UNDO PREVIOUS POP (RECORD IS NOT A NESTED RECORD OF parent_doc) return output if doc_id != previous_doc_id: previous_doc_id = doc_id doc = Null curr_nested_path = nested_doc_details['nested_path'][0] index_to_column = nested_doc_details['index_to_column'].items() if index_to_column: for i, c in index_to_column: value = row[i] if value == None: continue if value == '': continue if isinstance(query.select, list) or isinstance(query.select.value, LeavesOp): # ASSIGN INNER PROPERTIES relative_path=join_field([c.push_name]+split_field(c.push_child)) else: # FACT IS EXPECTED TO BE A SINGLE VALUE, NOT AN OBJECT relative_path=c.push_child if relative_path == ".": doc = value elif doc is Null: doc = Data() doc[relative_path] = value else: doc[relative_path] = value for child_details in nested_doc_details['children']: # EACH NESTED TABLE MUST BE ASSEMBLED INTO A LIST OF OBJECTS child_id = row[child_details['id_coord']] if child_id is not None: nested_value = _accumulate_nested(rows, row, child_details, doc_id, id_coord) if nested_value: push_name = child_details['nested_path'][0] if isinstance(query.select, list) or isinstance(query.select.value, LeavesOp): # ASSIGN INNER PROPERTIES relative_path=relative_field(push_name, curr_nested_path) else: # FACT IS EXPECTED TO BE A SINGLE VALUE, NOT AN OBJECT relative_path="." if relative_path == "." and doc is Null: doc = nested_value elif relative_path == ".": doc[push_name] = unwraplist([v[push_name] for v in nested_value]) elif doc is Null: doc = Data() doc[relative_path] = unwraplist(nested_value) else: doc[relative_path] = unwraplist(nested_value) output.append(doc) try: row = rows.pop() except IndexError: return output cols = tuple([i for i in index_to_column.values() if i.push_name != None]) rows = list(reversed(unwrap(result.data))) if rows: row = rows.pop() data = _accumulate_nested(rows, row, primary_doc_details, None, None) else: data = result.data if query.format == "cube": for f, _ in self.sf.tables.items(): if frum.endswith(f) or (test_dots(cols) and isinstance(query.select, list)): num_rows = len(result.data) num_cols = MAX([c.push_column for c in cols]) + 1 if len(cols) else 0 map_index_to_name = {c.push_column: c.push_column_name for c in cols} temp_data = [[None]*num_rows for _ in range(num_cols)] for rownum, d in enumerate(result.data): for c in cols: if c.push_child == ".": temp_data[c.push_column][rownum] = c.pull(d) else: column = temp_data[c.push_column][rownum] if column is None: column = temp_data[c.push_column][rownum] = Data() column[c.push_child] = c.pull(d) output = Data( meta={"format": "cube"}, data={n: temp_data[c] for c, n in map_index_to_name.items()}, edges=[{ "name": "rownum", "domain": { "type": "rownum", "min": 0, "max": num_rows, "interval": 1 } }] ) return output if isinstance(query.select, list) or isinstance(query.select.value, LeavesOp): num_rows = len(data) map_index_to_name = {c.push_column: c.push_column_name for c in cols} temp_data = Data() for rownum, d in enumerate(data): for k, v in d.items(): if temp_data[k] == None: temp_data[k] = [None] * num_rows temp_data[k][rownum] = v return Data( meta={"format": "cube"}, data={n: temp_data[literal_field(n)] for c, n in map_index_to_name.items()}, edges=[{ "name": "rownum", "domain": { "type": "rownum", "min": 0, "max": num_rows, "interval": 1 } }] ) else: num_rows = len(data) map_index_to_name = {c.push_column: c.push_column_name for c in cols} temp_data = [data] return Data( meta={"format": "cube"}, data={n: temp_data[c] for c, n in map_index_to_name.items()}, edges=[{ "name": "rownum", "domain": { "type": "rownum", "min": 0, "max": num_rows, "interval": 1 } }] ) elif query.format == "table": for f, _ in self.sf.tables.items(): if frum.endswith(f): num_column = MAX([c.push_column for c in cols])+1 header = [None]*num_column for c in cols: header[c.push_column] = c.push_column_name output_data = [] for d in result.data: row = [None] * num_column for c in cols: set_column(row, c.push_column, c.push_child, c.pull(d)) output_data.append(row) return Data( meta={"format": "table"}, header=header, data=output_data ) if isinstance(query.select, list) or isinstance(query.select.value, LeavesOp): num_rows = len(data) column_names= [None]*(max(c.push_column for c in cols) + 1) for c in cols: column_names[c.push_column] = c.push_column_name temp_data = [] for rownum, d in enumerate(data): row =[None] * len(column_names) for i, (k, v) in enumerate(sorted(d.items())): for c in cols: if k==c.push_name: row[c.push_column] = v temp_data.append(row) return Data( meta={"format": "table"}, header=column_names, data=temp_data ) else: column_names = listwrap(query.select).name return Data( meta={"format": "table"}, header=column_names, data=[[d] for d in data] ) else: for f, _ in self.sf.tables.items(): if frum.endswith(f) or (test_dots(cols) and isinstance(query.select, list)): data = [] for d in result.data: row = Data() for c in cols: if c.push_child == ".": row[c.push_name] = c.pull(d) elif c.num_push_columns: tuple_value = row[c.push_name] if not tuple_value: tuple_value = row[c.push_name] = [None] * c.num_push_columns tuple_value[c.push_child] = c.pull(d) elif not isinstance(query.select, list): # select is value type row[c.push_child]=c.pull(d) else: row[c.push_name][c.push_child] = c.pull(d) data.append(row) return Data( meta={"format": "list"}, data=data ) if isinstance(query.select, list) or isinstance(query.select.value, LeavesOp): temp_data=[] for rownum, d in enumerate(data): row = {} for k, v in d.items(): for c in cols: if c.push_name==c.push_column_name==k: row[c.push_column_name] = v elif c.push_name==k and c.push_column_name!=k: row[c.push_column_name] = v temp_data.append(row) return Data( meta={"format": "list"}, data=temp_data ) else: return Data( meta={"format": "list"}, data=data )
def _groupby_op(self, query, frum): base_table, path = tail_field(frum) schema = self.sf.tables[path].schema index_to_column = {} nest_to_alias = { nested_path: "__" + unichr(ord('a') + i) + "__" for i, (nested_path, sub_table) in enumerate(self.sf.tables.items()) } tables = [] for n, a in nest_to_alias.items(): if startswith_field(path, n): tables.append({"nest": n, "alias": a}) tables = jx.sort(tables, {"value": {"length": "nest"}}) from_sql = join_field( [base_table] + split_field(tables[0].nest)) + " " + tables[0].alias previous = tables[0] for t in tables[1::]: from_sql += (SQL_LEFT_JOIN + quote_column(concat_field(base_table, t.nest)) + " " + t.alias + SQL_ON + join_column(t.alias, quoted_PARENT) + " = " + join_column(previous.alias, quoted_UID)) selects = [] groupby = [] for i, e in enumerate(query.groupby): for edge_sql in e.value.to_sql(schema): column_number = len(selects) sql_type, sql = edge_sql.sql.items()[0] if sql is SQL_NULL and not e.value.var in schema.keys(): Log.error("No such column {{var}}", var=e.value.var) column_alias = _make_column_name(column_number) groupby.append(sql) selects.append(sql_alias(sql, column_alias)) if edge_sql.nested_path == ".": select_name = edge_sql.name else: select_name = "." index_to_column[column_number] = ColumnMapping( is_edge=True, push_name=e.name, push_column_name=e.name.replace("\\.", "."), push_column=i, push_child=select_name, pull=get_column(column_number), sql=sql, column_alias=column_alias, type=sql_type_to_json_type[sql_type]) for i, select in enumerate(listwrap(query.select)): column_number = len(selects) sql_type, sql = select.value.to_sql(schema)[0].sql.items()[0] if sql == 'NULL' and not select.value.var in schema.keys(): Log.error("No such column {{var}}", var=select.value.var) if select.value == "." and select.aggregate == "count": selects.append( sql_alias(sql_count(SQL_ONE), quote_column(select.name))) else: selects.append( sql_alias(sql_aggs[select.aggregate] + sql_iso(sql), quote_column(select.name))) index_to_column[column_number] = ColumnMapping( push_name=select.name, push_column_name=select.name, push_column=i + len(query.groupby), push_child=".", pull=get_column(column_number), sql=sql, column_alias=quote_column(select.name), type=sql_type_to_json_type[sql_type]) for w in query.window: selects.append(self._window_op(self, query, w)) where = query.where.to_sql(schema)[0].sql.b command = (SQL_SELECT + (sql_list(selects)) + SQL_FROM + from_sql + SQL_WHERE + where + SQL_GROUPBY + sql_list(groupby)) if query.sort: command += SQL_ORDERBY + sql_list( sql_iso(sql[t]) + SQL_IS_NULL + "," + sql[t] + (" DESC" if s.sort == -1 else "") for s, sql in [(s, s.value.to_sql(schema)[0].sql) for s in query.sort] for t in "bns" if sql[t]) return command, index_to_column
def _groupby_op(self, query, frum): schema = self.sf.tables[join_field(split_field(frum)[1:])].schema index_to_column = {} nest_to_alias = { nested_path: "__" + unichr(ord('a') + i) + "__" for i, (nested_path, sub_table) in enumerate(self.sf.tables.items()) } frum_path = split_field(frum) base_table = join_field(frum_path[0:1]) path = join_field(frum_path[1:]) tables = [] for n, a in nest_to_alias.items(): if startswith_field(path, n): tables.append({"nest": n, "alias": a}) tables = jx.sort(tables, {"value": {"length": "nest"}}) from_sql = join_field( [base_table] + split_field(tables[0].nest)) + " " + tables[0].alias previous = tables[0] for t in tables[1::]: from_sql += ("\nLEFT JOIN\n" + quote_table(concat_field(base_table, t.nest)) + " " + t.alias + " ON " + t.alias + "." + PARENT + " = " + previous.alias + "." + UID) selects = [] groupby = [] for i, e in enumerate(query.groupby): for s in e.value.to_sql(schema): column_number = len(selects) sql_type, sql = s.sql.items()[0] if sql == 'NULL' and not e.value.var in schema.keys(): Log.error("No such column {{var}}", var=e.value.var) column_alias = _make_column_name(column_number) groupby.append(sql) selects.append(sql + " AS " + column_alias) if s.nested_path == ".": select_name = s.name else: select_name = "." index_to_column[column_number] = ColumnMapping( is_edge=True, push_name=e.name, push_column_name=e.name.replace("\\.", "."), push_column=i, push_child=select_name, pull=get_column(column_number), sql=sql, column_alias=column_alias, type=sql_type_to_json_type[sql_type]) for i, s in enumerate(listwrap(query.select)): column_number = len(selects) sql_type, sql = s.value.to_sql(schema)[0].sql.items()[0] if sql == 'NULL' and not s.value.var in schema.keys(): Log.error("No such column {{var}}", var=s.value.var) if s.value == "." and s.aggregate == "count": selects.append("COUNT(1) AS " + quote_table(s.name)) else: selects.append(sql_aggs[s.aggregate] + "(" + sql + ") AS " + quote_table(s.name)) index_to_column[column_number] = ColumnMapping( push_name=s.name, push_column_name=s.name, push_column=i + len(query.groupby), push_child=".", pull=get_column(column_number), sql=sql, column_alias=quote_table(s.name), type=sql_type_to_json_type[sql_type]) for w in query.window: selects.append(self._window_op(self, query, w)) where = query.where.to_sql(schema)[0].sql.b command = "SELECT\n" + (",\n".join(selects)) + \ "\nFROM\n" + from_sql + \ "\nWHERE\n" + where + \ "\nGROUP BY\n" + ",\n".join(groupby) if query.sort: command += "\nORDER BY " + ",\n".join( "(" + sql[t] + ") IS NULL" + ",\n" + sql[t] + (" DESC" if s.sort == -1 else "") for s, sql in [(s, s.value.to_sql(schema)[0].sql) for s in query.sort] for t in "bns" if sql[t]) return command, index_to_column