Esempio n. 1
0
                    pull = get_column(num_sql_columns)

                if is_op(query_edge.value, TupleOp):
                    query_edge.allowNulls = False
                    push_child = column_index
                    num_push_columns = len(query_edge.value.terms)
                else:
                    push_child = "."
                    num_push_columns = None

                index_to_column[num_sql_columns] = ColumnMapping(
                    is_edge=True,
                    push_name=query_edge.name,
                    push_column_name=query_edge.name,
                    push_column=edge_index,
                    num_push_columns=num_push_columns,
                    push_child=push_child,  # CAN NOT HANDLE TUPLES IN COLUMN
                    pull=pull,
                    sql=sql,
                    type=sql_type_to_json_type[sql_type],
                    column_alias=sql_name)

            vals = [v for t, v in edge_values]
            if query_edge.domain.type == "set":
                domain_name = "d" + text(edge_index) + "c" + text(column_index)
                domain_names = [domain_name]
                if len(edge_names) > 1:
                    Log.error("Do not know how to handle")
                if query_edge.value:
                    domain = SQL_UNION_ALL.join(
                        SQL_SELECT + sql_alias(
Esempio n. 2
0
    def _set_op(self, query):
        # GET LIST OF SELECTED COLUMNS
        vars_ = UNION([
            v.var for select in listwrap(query.select)
            for v in select.value.vars()
        ])
        schema = self.schema
        known_vars = schema.keys()

        active_columns = {".": set()}
        for v in vars_:
            for c in schema.leaves(v):
                nest = c.nested_path[0]
                active_columns.setdefault(nest, set()).add(c)

        # ANY VARS MENTIONED WITH NO COLUMNS?
        for v in vars_:
            if not any(startswith_field(cname, v) for cname in known_vars):
                active_columns["."].add(
                    Column(name=v,
                           jx_type=IS_NULL,
                           es_column=".",
                           es_index=".",
                           es_type='NULL',
                           nested_path=["."],
                           last_updated=Date.now()))

        # EVERY COLUMN, AND THE INDEX IT TAKES UP
        index_to_column = {}  # MAP FROM INDEX TO COLUMN (OR SELECT CLAUSE)
        index_to_uid = {}  # FROM NESTED PATH TO THE INDEX OF UID
        sql_selects = [
        ]  # EVERY SELECT CLAUSE (NOT TO BE USED ON ALL TABLES, OF COURSE)
        nest_to_alias = {
            nested_path[0]: "__" + unichr(ord('a') + i) + "__"
            for i, nested_path in enumerate(self.snowflake.query_paths)
        }

        sorts = []
        if query.sort:
            for select in query.sort:
                col = SQLang[select.value].to_sql(schema)[0]
                for t, sql in col.sql.items():
                    json_type = sql_type_to_json_type[t]
                    if json_type in STRUCT:
                        continue
                    column_number = len(sql_selects)
                    # SQL HAS ABS TABLE REFERENCE
                    column_alias = _make_column_name(column_number)
                    sql_selects.append(sql_alias(sql, column_alias))
                    if select.sort == -1:
                        sorts.append(quote_column(column_alias) + SQL_IS_NULL)
                        sorts.append(quote_column(column_alias) + " DESC")
                    else:
                        sorts.append(quote_column(column_alias) + SQL_IS_NULL)
                        sorts.append(quote_column(column_alias))

        primary_doc_details = Data()
        # EVERY SELECT STATEMENT THAT WILL BE REQUIRED, NO MATTER THE DEPTH
        # WE WILL CREATE THEM ACCORDING TO THE DEPTH REQUIRED
        nested_path = []
        for step, sub_table in self.snowflake.tables:
            nested_path.insert(0, step)
            nested_doc_details = {
                "sub_table": sub_table,
                "children": [],
                "index_to_column": {},
                "nested_path": nested_path
            }

            # INSERT INTO TREE
            if not primary_doc_details:
                primary_doc_details = nested_doc_details
            else:

                def place(parent_doc_details):
                    if startswith_field(step,
                                        parent_doc_details['nested_path'][0]):
                        for c in parent_doc_details['children']:
                            if place(c):
                                return True
                        parent_doc_details['children'].append(
                            nested_doc_details)

                place(primary_doc_details)

            alias = nested_doc_details['alias'] = nest_to_alias[step]

            # WE ALWAYS ADD THE UID
            column_number = index_to_uid[step] = nested_doc_details[
                'id_coord'] = len(sql_selects)
            sql_select = quote_column(alias, UID)
            sql_selects.append(
                sql_alias(sql_select, _make_column_name(column_number)))
            if step != ".":
                # ID AND ORDER FOR CHILD TABLES
                index_to_column[column_number] = ColumnMapping(
                    sql=sql_select,
                    type="number",
                    nested_path=nested_path,
                    column_alias=_make_column_name(column_number))
                column_number = len(sql_selects)
                sql_select = quote_column(alias, ORDER)
                sql_selects.append(
                    sql_alias(sql_select, _make_column_name(column_number)))
                index_to_column[column_number] = ColumnMapping(
                    sql=sql_select,
                    type="number",
                    nested_path=nested_path,
                    column_alias=_make_column_name(column_number))

            # WE DO NOT NEED DATA FROM TABLES WE REQUEST NOTHING FROM
            if step not in active_columns:
                continue

            # ADD SQL SELECT COLUMNS FOR EACH jx SELECT CLAUSE
            si = 0
            for select in listwrap(query.select):
                try:
                    column_number = len(sql_selects)
                    select.pull = get_column(column_number)
                    db_columns = SQLang[select.value].partial_eval().to_sql(
                        schema)

                    for column in db_columns:
                        for t, unsorted_sql in column.sql.items():
                            json_type = sql_type_to_json_type[t]
                            if json_type in STRUCT:
                                continue
                            column_number = len(sql_selects)
                            column_alias = _make_column_name(column_number)
                            sql_selects.append(
                                sql_alias(unsorted_sql, column_alias))
                            if startswith_field(schema.path, step) and is_op(
                                    select.value, LeavesOp):
                                # ONLY FLATTEN primary_nested_path AND PARENTS, NOT CHILDREN
                                index_to_column[
                                    column_number] = nested_doc_details[
                                        'index_to_column'][
                                            column_number] = ColumnMapping(
                                                push_name=literal_field(
                                                    get_property_name(
                                                        concat_field(
                                                            select.name,
                                                            column.name))),
                                                push_child=".",
                                                push_column_name=
                                                get_property_name(
                                                    concat_field(
                                                        select.name,
                                                        column.name)),
                                                push_column=si,
                                                pull=get_column(column_number),
                                                sql=unsorted_sql,
                                                type=json_type,
                                                column_alias=column_alias,
                                                nested_path=nested_path)
                                si += 1
                            else:
                                index_to_column[
                                    column_number] = nested_doc_details[
                                        'index_to_column'][
                                            column_number] = ColumnMapping(
                                                push_name=select.name,
                                                push_child=column.name,
                                                push_column_name=select.name,
                                                push_column=si,
                                                pull=get_column(column_number),
                                                sql=unsorted_sql,
                                                type=json_type,
                                                column_alias=column_alias,
                                                nested_path=nested_path)
                finally:
                    si += 1

        where_clause = BooleanOp(query.where).partial_eval().to_sql(
            schema, boolean=True)[0].sql.b
        unsorted_sql = self._make_sql_for_one_nest_in_set_op(
            ".", sql_selects, where_clause, active_columns, index_to_column)

        for n, _ in self.snowflake.tables:
            sorts.append(quote_column(COLUMN + text(index_to_uid[n])))

        ordered_sql = ConcatSQL(
            (SQL_SELECT, SQL_STAR, SQL_FROM,
             sql_iso(unsorted_sql), SQL_ORDERBY, sql_list(sorts), SQL_LIMIT,
             quote_value(query.limit)))
        result = self.db.query(ordered_sql)

        def _accumulate_nested(rows, row, nested_doc_details, parent_doc_id,
                               parent_id_coord):
            """
            :param rows: REVERSED STACK OF ROWS (WITH push() AND pop())
            :param row: CURRENT ROW BEING EXTRACTED
            :param nested_doc_details: {
                    "nested_path": wrap_nested_path(nested_path),
                    "index_to_column": map from column number to column details
                    "children": all possible direct decedents' nested_doc_details
                 }
            :param parent_doc_id: the id of the parent doc (for detecting when to step out of loop)
            :param parent_id_coord: the column number for the parent id (so we ca extract from each row)
            :return: the nested property (usually an array)
            """
            previous_doc_id = None
            doc = Null
            output = []
            id_coord = nested_doc_details['id_coord']

            while True:
                doc_id = row[id_coord]

                if doc_id == None or (parent_id_coord is not None and
                                      row[parent_id_coord] != parent_doc_id):
                    rows.append(
                        row
                    )  # UNDO PREVIOUS POP (RECORD IS NOT A NESTED RECORD OF parent_doc)
                    return output

                if doc_id != previous_doc_id:
                    previous_doc_id = doc_id
                    doc = Null
                    curr_nested_path = nested_doc_details['nested_path'][0]
                    index_to_column = nested_doc_details[
                        'index_to_column'].items()
                    for i, c in index_to_column:
                        value = row[i]
                        if is_list(query.select) or is_op(
                                query.select.value, LeavesOp):
                            # ASSIGN INNER PROPERTIES
                            relative_field = concat_field(
                                c.push_name, c.push_child)
                        else:  # FACT IS EXPECTED TO BE A SINGLE VALUE, NOT AN OBJECT
                            relative_field = c.push_child

                        if relative_field == ".":
                            if exists(value):
                                doc = value
                        elif exists(value):
                            if doc is Null:
                                doc = Data()
                            doc[relative_field] = value

                for child_details in nested_doc_details['children']:
                    # EACH NESTED TABLE MUST BE ASSEMBLED INTO A LIST OF OBJECTS
                    child_id = row[child_details['id_coord']]
                    if child_id is not None:
                        nested_value = _accumulate_nested(
                            rows, row, child_details, doc_id, id_coord)
                        if nested_value != None:
                            push_name = child_details['nested_path'][0]
                            if is_list(query.select) or is_op(
                                    query.select.value, LeavesOp):
                                # ASSIGN INNER PROPERTIES
                                relative_field = relative_field(
                                    push_name, curr_nested_path)
                            else:  # FACT IS EXPECTED TO BE A SINGLE VALUE, NOT AN OBJECT
                                relative_field = "."

                            if relative_field == ".":
                                doc = unwraplist(nested_value)
                            else:
                                doc[relative_field] = unwraplist(nested_value)

                output.append(doc)

                try:
                    row = rows.pop()
                except IndexError:
                    return output

        cols = tuple(
            [i for i in index_to_column.values() if i.push_name != None])
        rows = list(reversed(unwrap(result.data)))
        if rows:
            row = rows.pop()
            data = _accumulate_nested(rows, row, primary_doc_details, None,
                                      None)
        else:
            data = result.data

        if query.format == "cube":
            # for f, full_name in self.snowflake.tables:
            #     if f != '.' or (test_dots(cols) and is_list(query.select)):
            #         num_rows = len(result.data)
            #         num_cols = MAX([c.push_column for c in cols]) + 1 if len(cols) else 0
            #         map_index_to_name = {c.push_column: c.push_column_name for c in cols}
            #         temp_data = [[None] * num_rows for _ in range(num_cols)]
            #         for rownum, d in enumerate(result.data):
            #             for c in cols:
            #                 if c.push_child == ".":
            #                     temp_data[c.push_column][rownum] = c.pull(d)
            #                 else:
            #                     column = temp_data[c.push_column][rownum]
            #                     if column is None:
            #                         column = temp_data[c.push_column][rownum] = {}
            #                     column[c.push_child] = c.pull(d)
            #         output = Data(
            #             meta={"format": "cube"},
            #             data={n: temp_data[c] for c, n in map_index_to_name.items()},
            #             edges=[{
            #                 "name": "rownum",
            #                 "domain": {
            #                     "type": "rownum",
            #                     "min": 0,
            #                     "max": num_rows,
            #                     "interval": 1
            #                 }
            #             }]
            #         )
            #         return output

            if is_list(query.select) or is_op(query.select.value, LeavesOp):
                num_rows = len(data)
                temp_data = {
                    c.push_column_name: [None] * num_rows
                    for c in cols
                }
                for rownum, d in enumerate(data):
                    for c in cols:
                        temp_data[c.push_column_name][rownum] = d[c.push_name]
                return Data(meta={"format": "cube"},
                            data=temp_data,
                            edges=[{
                                "name": "rownum",
                                "domain": {
                                    "type": "rownum",
                                    "min": 0,
                                    "max": num_rows,
                                    "interval": 1
                                }
                            }])
            else:
                num_rows = len(data)
                map_index_to_name = {
                    c.push_column: c.push_column_name
                    for c in cols
                }
                temp_data = [data]

                return Data(meta={"format": "cube"},
                            data={
                                n: temp_data[c]
                                for c, n in map_index_to_name.items()
                            },
                            edges=[{
                                "name": "rownum",
                                "domain": {
                                    "type": "rownum",
                                    "min": 0,
                                    "max": num_rows,
                                    "interval": 1
                                }
                            }])

        elif query.format == "table":
            # for f, _ in self.snowflake.tables:
            #     if frum.endswith(f):
            #         num_column = MAX([c.push_column for c in cols]) + 1
            #         header = [None] * num_column
            #         for c in cols:
            #             header[c.push_column] = c.push_column_name
            #
            #         output_data = []
            #         for d in result.data:
            #             row = [None] * num_column
            #             for c in cols:
            #                 set_column(row, c.push_column, c.push_child, c.pull(d))
            #             output_data.append(row)
            #
            #         return Data(
            #             meta={"format": "table"},
            #             header=header,
            #             data=output_data
            #         )
            if is_list(query.select) or is_op(query.select.value, LeavesOp):
                column_names = [None] * (max(c.push_column for c in cols) + 1)
                for c in cols:
                    column_names[c.push_column] = c.push_column_name

                temp_data = []
                for rownum, d in enumerate(data):
                    row = [None] * len(column_names)
                    for c in cols:
                        row[c.push_column] = d[c.push_name]
                    temp_data.append(row)

                return Data(meta={"format": "table"},
                            header=column_names,
                            data=temp_data)
            else:
                column_names = listwrap(query.select).name
                return Data(meta={"format": "table"},
                            header=column_names,
                            data=[[d] for d in data])

        else:
            # for f, _ in self.snowflake.tables:
            #     if frum.endswith(f) or (test_dots(cols) and is_list(query.select)):
            #         data = []
            #         for d in result.data:
            #             row = Data()
            #             for c in cols:
            #                 if c.push_child == ".":
            #                     row[c.push_name] = c.pull(d)
            #                 elif c.num_push_columns:
            #                     tuple_value = row[c.push_name]
            #                     if not tuple_value:
            #                         tuple_value = row[c.push_name] = [None] * c.num_push_columns
            #                     tuple_value[c.push_child] = c.pull(d)
            #                 else:
            #                     row[c.push_name][c.push_child] = c.pull(d)
            #
            #             data.append(row)
            #
            #         return Data(
            #             meta={"format": "list"},
            #             data=data
            #         )

            if is_list(query.select) or is_op(query.select.value, LeavesOp):
                temp_data = []
                for rownum, d in enumerate(data):
                    row = {}
                    for c in cols:
                        row[c.push_column_name] = d[c.push_name]
                    temp_data.append(row)
                return Data(meta={"format": "list"}, data=temp_data)
            else:
                return Data(meta={"format": "list"}, data=data)
Esempio n. 3
0
    def _set_op(self, query, frum):
        # GET LIST OF COLUMNS
        frum_path = split_field(frum)
        primary_nested_path = join_field(frum_path[1:])
        vars_ = UNION([s.value.vars() for s in listwrap(query.select)])
        schema = self.sf.tables[primary_nested_path].schema

        nest_to_alias = {
            nested_path: "__" + unichr(ord('a') + i) + "__"
            for i, (nested_path, sub_table) in enumerate(self.sf.tables.items())
        }

        active_columns = {".": []}
        for cname, cols in schema.items():
            if any(startswith_field(cname, v) for v in vars_):
                for c in cols:
                    if c.type in STRUCT:
                        continue
                    nest = c.nested_path[0]
                    active = active_columns.get(nest)
                    if not active:
                        active = active_columns[nest] = []
                    active.append(c)

        for nested_path, s in self.sf.tables.items():
            for cname, cols in s.schema.items():
                if not any(startswith_field(cname, c.names[c.nested_path[0]]) for n, cc in active_columns.items() for c in cc):
                    for c in cols:
                        if c.type in STRUCT:
                            continue
                        nest = c.nested_path[0]
                        active = active_columns.get(nest)
                        if not active:
                            active = active_columns[nest] = []
                        active.append(c)

        # ANY VARS MENTIONED WITH NO COLUMNS?
        for v in vars_:
            if not any(startswith_field(cname, v) for cname in schema.keys()):
                active_columns["."].append(Column(
                    names={".": v},
                    type="null",
                    es_column=".",
                    es_index=".",
                    nested_path=["."]
                ))

        # EVERY COLUMN, AND THE INDEX IT TAKES UP
        index_to_column = {}  # MAP FROM INDEX TO COLUMN (OR SELECT CLAUSE)
        index_to_uid = {}  # FROM NESTED PATH TO THE INDEX OF UID
        sql_selects = []  # EVERY SELECT CLAUSE (NOT TO BE USED ON ALL TABLES, OF COURSE)
        nest_to_alias = {
            nested_path: "__" + unichr(ord('a') + i) + "__"
            for i, (nested_path, sub_table) in enumerate(self.sf.tables.items())
            }

        sorts = []
        if query.sort:
            for s in query.sort:
                col = s.value.to_sql(schema)[0]
                for t, sql in col.sql.items():
                    json_type = sql_type_to_json_type[t]
                    if json_type in STRUCT:
                        continue
                    column_number = len(sql_selects)
                    # SQL HAS ABS TABLE REFERENCE
                    column_alias = _make_column_name(column_number)
                    sql_selects.append(sql + " AS " + column_alias)
                    if s.sort == -1:
                        sorts.append(column_alias + " IS NOT NULL")
                        sorts.append(column_alias + " DESC")
                    else:
                        sorts.append(column_alias + " IS NULL")
                        sorts.append(column_alias)

        selects = []
        primary_doc_details = Data()
        # EVERY SELECT STATEMENT THAT WILL BE REQUIRED, NO MATTER THE DEPTH
        # WE WILL CREATE THEM ACCORDING TO THE DEPTH REQUIRED
        for nested_path, sub_table in self.sf.tables.items():
            nested_doc_details = {
                "sub_table": sub_table,
                "children": [],
                "index_to_column": {},
                "nested_path": [nested_path]  # fake the real nested path, we only look at [0] anyway
            }

            # INSERT INTO TREE
            if not primary_doc_details:
                primary_doc_details = nested_doc_details
            else:
                def place(parent_doc_details):
                    if startswith_field(nested_path, parent_doc_details['nested_path'][0]):
                        for c in parent_doc_details['children']:
                            if place(c):
                                return True
                        parent_doc_details['children'].append(nested_doc_details)

                place(primary_doc_details)

            alias = nested_doc_details['alias'] = nest_to_alias[nested_path]

            if nested_path=="." and quoted_GUID in vars_:
                column_number = index_to_uid[nested_path] = nested_doc_details['id_coord'] = len(sql_selects)
                sql_select = alias + "." + quoted_GUID
                sql_selects.append(sql_select + " AS " + _make_column_name(column_number))
                index_to_column[column_number] = nested_doc_details['index_to_column'][column_number] = ColumnMapping(
                    push_name="_id",
                    push_column_name="_id",
                    push_column=0,
                    push_child=".",
                    sql=sql_select,
                    pull=get_column(column_number),
                    type="string",
                    column_alias=_make_column_name(column_number),
                    nested_path=[nested_path]           # fake the real nested path, we only look at [0] anyway
                )
                query.select = [s for s in listwrap(query.select) if s.name!="_id"]


            # WE ALWAYS ADD THE UID AND ORDER
            column_number = index_to_uid[nested_path] = nested_doc_details['id_coord'] = len(sql_selects)
            sql_select = alias + "." + quoted_UID
            sql_selects.append(sql_select + " AS " + _make_column_name(column_number))
            if nested_path !=".":
                index_to_column[column_number]=ColumnMapping(
                    sql=sql_select,
                    type="number",
                    nested_path=[nested_path],            # fake the real nested path, we only look at [0] anyway
                    column_alias=_make_column_name(column_number)

                )
                column_number = len(sql_selects)
                sql_select = alias + "." + quote_table(ORDER)
                sql_selects.append(sql_select + " AS " + _make_column_name(column_number))
                index_to_column[column_number]=ColumnMapping(
                    sql=sql_select,
                    type="number",
                    nested_path=[nested_path],            # fake the real nested path, we only look at [0] anyway
                    column_alias=_make_column_name(column_number)

                )

            # WE DO NOT NEED DATA FROM TABLES WE REQUEST NOTHING FROM
            if nested_path not in active_columns:
                continue

            if len(active_columns[nested_path]) != 0:
                # ADD SQL SELECT COLUMNS FOR EACH jx SELECT CLAUSE
                si = 0
                for s in listwrap(query.select):
                    try:
                        column_number = len(sql_selects)
                        s.pull = get_column(column_number)
                        db_columns = s.value.to_sql(schema)

                        if isinstance(s.value, LeavesOp):
                            for column in db_columns:
                                if isinstance(column.nested_path, list):
                                    column.nested_path=column.nested_path[0]
                                if column.nested_path and column.nested_path!=nested_path:
                                    continue
                                for t, unsorted_sql in column.sql.items():
                                    json_type = sql_type_to_json_type[t]
                                    if json_type in STRUCT:
                                        continue
                                    column_number = len(sql_selects)
                                    # SQL HAS ABS TABLE REFERENCE
                                    column_alias = _make_column_name(column_number)
                                    if concat_field(alias, unsorted_sql) in selects and len(unsorted_sql.split())==1:
                                        continue
                                    selects.append(concat_field(alias, unsorted_sql))
                                    sql_selects.append(alias + "." + unsorted_sql + " AS " + column_alias)
                                    index_to_column[column_number] = nested_doc_details['index_to_column'][column_number] = ColumnMapping(
                                        push_name=literal_field(get_property_name(concat_field(s.name, column.name))),
                                        push_column_name=get_property_name(concat_field(s.name, column.name)),
                                        push_column=si,
                                        push_child=".",
                                        pull=get_column(column_number),
                                        sql=unsorted_sql,
                                        type=json_type,
                                        column_alias=column_alias,
                                        nested_path=[nested_path]           # fake the real nested path, we only look at [0] anyway
                                    )
                                    si += 1
                        else:
                            for column in db_columns:
                                if isinstance(column.nested_path, list):
                                    column.nested_path=column.nested_path[0]
                                if column.nested_path and column.nested_path!=nested_path:
                                    continue
                                for t, unsorted_sql in column.sql.items():
                                    json_type = sql_type_to_json_type[t]
                                    if json_type in STRUCT:
                                        continue
                                    column_number = len(sql_selects)
                                    # SQL HAS ABS TABLE REFERENCE
                                    column_alias = _make_column_name(column_number)
                                    if concat_field(alias, unsorted_sql) in selects and len(unsorted_sql.split())==1:
                                        continue
                                    selects.append(concat_field(alias, unsorted_sql))
                                    sql_selects.append(alias + "." + unsorted_sql + " AS " + column_alias)
                                    index_to_column[column_number] = nested_doc_details['index_to_column'][column_number] = ColumnMapping(
                                        push_name=s.name,
                                        push_column_name=s.name,
                                        push_column=si,
                                        push_child=column.name,
                                        pull=get_column(column_number),
                                        sql=unsorted_sql,
                                        type=json_type,
                                        column_alias=column_alias,
                                        nested_path=[nested_path]
                                        # fake the real nested path, we only look at [0] anyway
                                    )
                    finally:
                        si += 1
            elif startswith_field(nested_path, primary_nested_path):
                # ADD REQUIRED COLUMNS, FOR DEEP STUFF
                for ci, c in enumerate(active_columns[nested_path]):
                    if c.type in STRUCT:
                        continue

                    column_number = len(sql_selects)
                    nested_path = c.nested_path
                    unsorted_sql = nest_to_alias[nested_path[0]] + "." + quote_table(c.es_column)
                    column_alias = _make_column_name(column_number)
                    if concat_field(alias, unsorted_sql) in selects and len(unsorted_sql.split())==1:
                        continue
                    selects.append(concat_field(alias, unsorted_sql))
                    sql_selects.append(alias + "." + unsorted_sql + " AS " + column_alias)
                    index_to_column[column_number] = nested_doc_details['index_to_column'][column_number] = ColumnMapping(
                        push_name=s.name,
                        push_column_name=s.name,
                        push_column=si,
                        push_child=relative_field(c.names["."], s.name),
                        pull=get_column(column_number),
                        sql=unsorted_sql,
                        type=c.type,
                        column_alias=column_alias,
                        nested_path=nested_path
                    )

        where_clause = query.where.to_sql(schema, boolean=True)[0].sql.b
        unsorted_sql = self._make_sql_for_one_nest_in_set_op(
            ".",
            sql_selects,
            where_clause,
            active_columns,
            index_to_column
        )

        for n, _ in self.sf.tables.items():
            sorts.append(COLUMN + text_type(index_to_uid[n]))

        ordered_sql = (
            "SELECT * FROM (\n" +
            unsorted_sql +
            "\n)" +
            "\nORDER BY\n" + ",\n".join(sorts) +
            "\nLIMIT " + quote_value(query.limit)
        )
        self.db.create_new_functions()  #creating new functions: regexp
        result = self.db.query(ordered_sql)

        def _accumulate_nested(rows, row, nested_doc_details, parent_doc_id, parent_id_coord):
            """
            :param rows: REVERSED STACK OF ROWS (WITH push() AND pop())
            :param row: CURRENT ROW BEING EXTRACTED
            :param nested_doc_details: {
                    "nested_path": wrap_nested_path(nested_path),
                    "index_to_column": map from column number to column details
                    "children": all possible direct decedents' nested_doc_details
                 }
            :param parent_doc_id: the id of the parent doc (for detecting when to step out of loop)
            :param parent_id_coord: the column number for the parent id (so we ca extract from each row)
            :return: the nested property (usually an array)
            """
            previous_doc_id = None
            doc = Null
            output = []
            id_coord = nested_doc_details['id_coord']

            while True:
                doc_id = row[id_coord]

                if doc_id == None or (parent_id_coord is not None and row[parent_id_coord] != parent_doc_id):
                    rows.append(row)  # UNDO PREVIOUS POP (RECORD IS NOT A NESTED RECORD OF parent_doc)
                    return output

                if doc_id != previous_doc_id:
                    previous_doc_id = doc_id
                    doc = Null
                    curr_nested_path = nested_doc_details['nested_path'][0]
                    index_to_column = nested_doc_details['index_to_column'].items()
                    if index_to_column:
                        for i, c in index_to_column:
                            value = row[i]
                            if value == None:
                                continue
                            if value == '':
                                continue

                            if isinstance(query.select, list) or isinstance(query.select.value, LeavesOp):
                                # ASSIGN INNER PROPERTIES
                                relative_path=join_field([c.push_name]+split_field(c.push_child))
                            else:           # FACT IS EXPECTED TO BE A SINGLE VALUE, NOT AN OBJECT
                                relative_path=c.push_child

                            if relative_path == ".":
                                doc = value
                            elif doc is Null:
                                doc = Data()
                                doc[relative_path] = value
                            else:
                                doc[relative_path] = value

                for child_details in nested_doc_details['children']:
                    # EACH NESTED TABLE MUST BE ASSEMBLED INTO A LIST OF OBJECTS
                    child_id = row[child_details['id_coord']]
                    if child_id is not None:
                        nested_value = _accumulate_nested(rows, row, child_details, doc_id, id_coord)
                        if nested_value:
                            push_name = child_details['nested_path'][0]
                            if isinstance(query.select, list) or isinstance(query.select.value, LeavesOp):
                                # ASSIGN INNER PROPERTIES
                                relative_path=relative_field(push_name, curr_nested_path)
                            else:           # FACT IS EXPECTED TO BE A SINGLE VALUE, NOT AN OBJECT
                                relative_path="."

                            if relative_path == "." and doc is Null:
                                doc = nested_value
                            elif relative_path == ".":
                                doc[push_name] = unwraplist([v[push_name] for v in nested_value])
                            elif doc is Null:
                                doc = Data()
                                doc[relative_path] = unwraplist(nested_value)
                            else:
                                doc[relative_path] = unwraplist(nested_value)

                output.append(doc)

                try:
                    row = rows.pop()
                except IndexError:
                    return output

        cols = tuple([i for i in index_to_column.values() if i.push_name != None])
        rows = list(reversed(unwrap(result.data)))
        if rows:
            row = rows.pop()
            data = _accumulate_nested(rows, row, primary_doc_details, None, None)
        else:
            data = result.data

        if query.format == "cube":
            for f, _ in self.sf.tables.items():
                if frum.endswith(f) or (test_dots(cols) and isinstance(query.select, list)):
                    num_rows = len(result.data)
                    num_cols = MAX([c.push_column for c in cols]) + 1 if len(cols) else 0
                    map_index_to_name = {c.push_column: c.push_column_name for c in cols}
                    temp_data = [[None]*num_rows for _ in range(num_cols)]
                    for rownum, d in enumerate(result.data):
                        for c in cols:
                            if c.push_child == ".":
                                temp_data[c.push_column][rownum] = c.pull(d)
                            else:
                                column = temp_data[c.push_column][rownum]
                                if column is None:
                                    column = temp_data[c.push_column][rownum] = Data()
                                column[c.push_child] = c.pull(d)
                    output = Data(
                        meta={"format": "cube"},
                        data={n: temp_data[c] for c, n in map_index_to_name.items()},
                        edges=[{
                            "name": "rownum",
                            "domain": {
                                "type": "rownum",
                                "min": 0,
                                "max": num_rows,
                                "interval": 1
                            }
                        }]
                    )
                    return output

            if isinstance(query.select, list) or isinstance(query.select.value, LeavesOp):
                num_rows = len(data)
                map_index_to_name = {c.push_column: c.push_column_name for c in cols}
                temp_data = Data()
                for rownum, d in enumerate(data):
                    for k, v in d.items():
                        if temp_data[k] == None:
                            temp_data[k] = [None] * num_rows
                        temp_data[k][rownum] = v
                return Data(
                    meta={"format": "cube"},
                    data={n: temp_data[literal_field(n)] for c, n in map_index_to_name.items()},
                    edges=[{
                        "name": "rownum",
                        "domain": {
                            "type": "rownum",
                            "min": 0,
                            "max": num_rows,
                            "interval": 1
                        }
                    }]
                )
            else:
                num_rows = len(data)
                map_index_to_name = {c.push_column: c.push_column_name for c in cols}
                temp_data = [data]

                return Data(
                    meta={"format": "cube"},
                    data={n: temp_data[c] for c, n in map_index_to_name.items()},
                    edges=[{
                        "name": "rownum",
                        "domain": {
                            "type": "rownum",
                            "min": 0,
                            "max": num_rows,
                            "interval": 1
                        }
                    }]
                )

        elif query.format == "table":
            for f, _ in self.sf.tables.items():
                if  frum.endswith(f):
                    num_column = MAX([c.push_column for c in cols])+1
                    header = [None]*num_column
                    for c in cols:
                        header[c.push_column] = c.push_column_name

                    output_data = []
                    for d in result.data:
                        row = [None] * num_column
                        for c in cols:
                            set_column(row, c.push_column, c.push_child, c.pull(d))
                        output_data.append(row)

                    return Data(
                        meta={"format": "table"},
                        header=header,
                        data=output_data
                    )
            if isinstance(query.select, list) or isinstance(query.select.value, LeavesOp):
                num_rows = len(data)
                column_names= [None]*(max(c.push_column for c in cols) + 1)
                for c in cols:
                    column_names[c.push_column] = c.push_column_name

                temp_data = []
                for rownum, d in enumerate(data):
                    row =[None] * len(column_names)
                    for i, (k, v) in enumerate(sorted(d.items())):
                        for c in cols:
                            if k==c.push_name:
                                row[c.push_column] = v
                    temp_data.append(row)

                return Data(
                    meta={"format": "table"},
                    header=column_names,
                    data=temp_data
                )
            else:
                column_names = listwrap(query.select).name
                return Data(
                    meta={"format": "table"},
                    header=column_names,
                    data=[[d] for d in data]
                )

        else:
            for f, _ in self.sf.tables.items():
                if frum.endswith(f) or (test_dots(cols) and isinstance(query.select, list)):
                    data = []
                    for d in result.data:
                        row = Data()
                        for c in cols:
                            if c.push_child == ".":
                                row[c.push_name] = c.pull(d)
                            elif c.num_push_columns:
                                tuple_value = row[c.push_name]
                                if not tuple_value:
                                    tuple_value = row[c.push_name] = [None] * c.num_push_columns
                                tuple_value[c.push_child] = c.pull(d)
                            elif not isinstance(query.select, list):   # select is value type
                                row[c.push_child]=c.pull(d)
                            else:
                                row[c.push_name][c.push_child] = c.pull(d)

                        data.append(row)

                    return Data(
                        meta={"format": "list"},
                        data=data
                    )

            if isinstance(query.select, list) or isinstance(query.select.value, LeavesOp):
                temp_data=[]
                for rownum, d in enumerate(data):
                    row = {}
                    for k, v in d.items():
                        for c in cols:
                            if c.push_name==c.push_column_name==k:
                                    row[c.push_column_name] = v
                            elif c.push_name==k and c.push_column_name!=k:
                                    row[c.push_column_name] = v
                    temp_data.append(row)
                return Data(
                    meta={"format": "list"},
                    data=temp_data
                )
            else:
                return Data(
                    meta={"format": "list"},
                    data=data
                )
    def _groupby_op(self, query, frum):
        base_table, path = tail_field(frum)
        schema = self.sf.tables[path].schema
        index_to_column = {}
        nest_to_alias = {
            nested_path: "__" + unichr(ord('a') + i) + "__"
            for i, (nested_path,
                    sub_table) in enumerate(self.sf.tables.items())
        }
        tables = []
        for n, a in nest_to_alias.items():
            if startswith_field(path, n):
                tables.append({"nest": n, "alias": a})
        tables = jx.sort(tables, {"value": {"length": "nest"}})

        from_sql = join_field(
            [base_table] + split_field(tables[0].nest)) + " " + tables[0].alias
        previous = tables[0]
        for t in tables[1::]:
            from_sql += (SQL_LEFT_JOIN +
                         quote_column(concat_field(base_table, t.nest)) + " " +
                         t.alias + SQL_ON +
                         join_column(t.alias, quoted_PARENT) + " = " +
                         join_column(previous.alias, quoted_UID))

        selects = []
        groupby = []
        for i, e in enumerate(query.groupby):
            for edge_sql in e.value.to_sql(schema):
                column_number = len(selects)
                sql_type, sql = edge_sql.sql.items()[0]
                if sql is SQL_NULL and not e.value.var in schema.keys():
                    Log.error("No such column {{var}}", var=e.value.var)

                column_alias = _make_column_name(column_number)
                groupby.append(sql)
                selects.append(sql_alias(sql, column_alias))
                if edge_sql.nested_path == ".":
                    select_name = edge_sql.name
                else:
                    select_name = "."
                index_to_column[column_number] = ColumnMapping(
                    is_edge=True,
                    push_name=e.name,
                    push_column_name=e.name.replace("\\.", "."),
                    push_column=i,
                    push_child=select_name,
                    pull=get_column(column_number),
                    sql=sql,
                    column_alias=column_alias,
                    type=sql_type_to_json_type[sql_type])

        for i, select in enumerate(listwrap(query.select)):
            column_number = len(selects)
            sql_type, sql = select.value.to_sql(schema)[0].sql.items()[0]
            if sql == 'NULL' and not select.value.var in schema.keys():
                Log.error("No such column {{var}}", var=select.value.var)

            if select.value == "." and select.aggregate == "count":
                selects.append(
                    sql_alias(sql_count(SQL_ONE), quote_column(select.name)))
            else:
                selects.append(
                    sql_alias(sql_aggs[select.aggregate] + sql_iso(sql),
                              quote_column(select.name)))

            index_to_column[column_number] = ColumnMapping(
                push_name=select.name,
                push_column_name=select.name,
                push_column=i + len(query.groupby),
                push_child=".",
                pull=get_column(column_number),
                sql=sql,
                column_alias=quote_column(select.name),
                type=sql_type_to_json_type[sql_type])

        for w in query.window:
            selects.append(self._window_op(self, query, w))

        where = query.where.to_sql(schema)[0].sql.b

        command = (SQL_SELECT + (sql_list(selects)) + SQL_FROM + from_sql +
                   SQL_WHERE + where + SQL_GROUPBY + sql_list(groupby))

        if query.sort:
            command += SQL_ORDERBY + sql_list(
                sql_iso(sql[t]) + SQL_IS_NULL + "," + sql[t] +
                (" DESC" if s.sort == -1 else "")
                for s, sql in [(s, s.value.to_sql(schema)[0].sql)
                               for s in query.sort] for t in "bns" if sql[t])

        return command, index_to_column
Esempio n. 5
0
    def _groupby_op(self, query, frum):
        schema = self.sf.tables[join_field(split_field(frum)[1:])].schema
        index_to_column = {}
        nest_to_alias = {
            nested_path: "__" + unichr(ord('a') + i) + "__"
            for i, (nested_path,
                    sub_table) in enumerate(self.sf.tables.items())
        }
        frum_path = split_field(frum)
        base_table = join_field(frum_path[0:1])
        path = join_field(frum_path[1:])
        tables = []
        for n, a in nest_to_alias.items():
            if startswith_field(path, n):
                tables.append({"nest": n, "alias": a})
        tables = jx.sort(tables, {"value": {"length": "nest"}})

        from_sql = join_field(
            [base_table] + split_field(tables[0].nest)) + " " + tables[0].alias
        previous = tables[0]
        for t in tables[1::]:
            from_sql += ("\nLEFT JOIN\n" +
                         quote_table(concat_field(base_table, t.nest)) + " " +
                         t.alias + " ON " + t.alias + "." + PARENT + " = " +
                         previous.alias + "." + UID)

        selects = []
        groupby = []
        for i, e in enumerate(query.groupby):
            for s in e.value.to_sql(schema):
                column_number = len(selects)
                sql_type, sql = s.sql.items()[0]
                if sql == 'NULL' and not e.value.var in schema.keys():
                    Log.error("No such column {{var}}", var=e.value.var)

                column_alias = _make_column_name(column_number)
                groupby.append(sql)
                selects.append(sql + " AS " + column_alias)
                if s.nested_path == ".":
                    select_name = s.name
                else:
                    select_name = "."
                index_to_column[column_number] = ColumnMapping(
                    is_edge=True,
                    push_name=e.name,
                    push_column_name=e.name.replace("\\.", "."),
                    push_column=i,
                    push_child=select_name,
                    pull=get_column(column_number),
                    sql=sql,
                    column_alias=column_alias,
                    type=sql_type_to_json_type[sql_type])

        for i, s in enumerate(listwrap(query.select)):
            column_number = len(selects)
            sql_type, sql = s.value.to_sql(schema)[0].sql.items()[0]
            if sql == 'NULL' and not s.value.var in schema.keys():
                Log.error("No such column {{var}}", var=s.value.var)

            if s.value == "." and s.aggregate == "count":
                selects.append("COUNT(1) AS " + quote_table(s.name))
            else:
                selects.append(sql_aggs[s.aggregate] + "(" + sql + ") AS " +
                               quote_table(s.name))

            index_to_column[column_number] = ColumnMapping(
                push_name=s.name,
                push_column_name=s.name,
                push_column=i + len(query.groupby),
                push_child=".",
                pull=get_column(column_number),
                sql=sql,
                column_alias=quote_table(s.name),
                type=sql_type_to_json_type[sql_type])

        for w in query.window:
            selects.append(self._window_op(self, query, w))

        where = query.where.to_sql(schema)[0].sql.b

        command = "SELECT\n" + (",\n".join(selects)) + \
                  "\nFROM\n" + from_sql + \
                  "\nWHERE\n" + where + \
                  "\nGROUP BY\n" + ",\n".join(groupby)

        if query.sort:
            command += "\nORDER BY " + ",\n".join(
                "(" + sql[t] + ") IS NULL" + ",\n" + sql[t] +
                (" DESC" if s.sort == -1 else "")
                for s, sql in [(s, s.value.to_sql(schema)[0].sql)
                               for s in query.sort] for t in "bns" if sql[t])

        return command, index_to_column