def __moveAgent(self, inputAgent, movementVector): """ This is a private function that is called by the moveAttempt function. this function is only called if a move is determined to be legal. Once the move is determined to be legal, this function will go and update the position of the agent on the field. :param inputAgent: a reference to the agent that is is being moved. :param movementVector: the vector that will be added to the inputAgent's current position. The sum of the current position and the movementVector will be the new position of the inputAgent. :type inputAgent: agent :type movementVector: a tuple of floats :returns: no return .. note:: This is a private function that the user shouldn't worry about calling. Only the move_attempt() function should be called. """ if inputAgent.getAgentType() == "keeper": newNoiseFreePos = kUtil.addVectorToPoint(self.keeperTruePosArray[inputAgent.getSimIndex()], movementVector) self.keeperTruePosArray[inputAgent.getSimIndex()] = newNoiseFreePos elif inputAgent.getAgentType() == "taker": newNoiseFreePos = kUtil.addVectorToPoint(self.takerTruePosArray[inputAgent.getSimIndex()], movementVector) self.takerTruePosArray[inputAgent.getSimIndex()] = newNoiseFreePos inputAgent.updateAgentPosition(kUtil.getNoisyVals(newNoiseFreePos, self.agentSigmaError))
def agentBallIntersection(self, inputAgent): #print() agentRadius = self.agent_block_size / 2 ballRadius = self.ball_block_size / 2 cutoff = agentRadius+ ballRadius agentMidPoint = kUtil.addVectorToPoint(inputAgent.true_pos, (self.agent_block_size/2, self.agent_block_size/2)) ballMidPoint = kUtil.addVectorToPoint(self.fieldBall.trueBallPos, (self.ball_block_size/2, self.ball_block_size/2)) #print("agent actual:", inputAgent.true_pos, "agentMid:", agentMidPoint) #print("agentMid:", agentMidPoint, " ballMid:", ballMidPoint) distBetweenMidPoints = kUtil.getDist(agentMidPoint, ballMidPoint) #print("Cutoff: ", cutoff, " actual Distance: ", distBetweenMidPoints) if (distBetweenMidPoints <= cutoff): return True else: return False
def calc_receive_ball_moving(self): #make sure that you're only doing this if for i in range(len(self.keeperArray)): if self.keeperArray[i].inPosession == True: rDecision = (i, self.keeperArray[i].true_pos) return for i in range(len(self.takerArray)): if self.takerArray[i].inPosession == True: return TA = kUtil.addVectorToPoint(self.fieldBall.trueBallPos, self.fieldBall.trueBallDirection) TB = self.fieldBall.trueBallPos minTime = 99999.0 argmin = None bestPerpIntersect = None for i in range(len(self.keeperArray)): TC = self.keeperArray[i].true_pos if (kUtil.cosTheta(TA, TB, TC)) < 0: #print("Keeper " , i, " can't get to ball: the cosTheta is negetive.") #it's impossible for this keeper to get the ball continue else: pd = kUtil.getPerpDist(TA, TB, TC) pt = pd/self.maxPlayerSpeed normalVector = kUtil.getNormalVector(TA, TB, TC) perpIntersect = kUtil.addVectorToPoint(TC, normalVector) bd = kUtil.getDist(TB, perpIntersect) bt = bd/self.maxBallSpeed if pt > bt: #keeper wont' be able be able to get to ball in time #print("player ", i+1, "can't reach ball as pt:",pt," and bt: ",bt) continue else: #keeper CAN get to ball. can it get there soonest though? #save the fastest keeper if (pt < minTime): minTime = pt argmin = i bestPerpIntersect = perpIntersect #at this point, if a keeper can get to the ball, the fastest and it's intercept are saved if (argmin != None): rDecision = [argmin, self.calcOptimal(self.keeperArray, argmin, bestPerpIntersect)] for i in range(len(self.keeperArray)): self.keeperArray[i].receiveDecision(rDecision) for i in range(len(self.takerArray)): self.takerArray[i].receiveDecision(rDecision) else: print("no argmin found. game about to crash for sure")
def debugPassVectors(self, startPoint, vectors): """ This function is meant to display yellow dots to help the programmer figure out if the getRotatedVectors function works correctly. The getRotatedVectors function ended up being discarded, but code for it is still kept incase the developers decide they want to use it later on :param vectors: 2 vectors that were calculated by getRotatedVectors :param startPoint: the vertex/starting point of the vector that you're trying to rotate. You rotate about the vertex. :type vectors: a list of 2 vectors, each vector being a tuple of floats :type startPoint: a tuple or list of floats :returns: no return """ self.worldRef.__drawWorld () self.worldRef.__displayScore() print("Starting point: ", startPoint) for vector in vectors: newVector = kUtil.addVectorToPoint(startPoint, kUtil.scalarMultiply(5, vector)) print("printing vector: ", newVector) self.worldRef.gameDisplay.blit(self.worldRef.__debugYellowDotImage, (newVector[1], newVector[0])) self.worldRef.gameDisplay.blit(self.worldRef.__debugRedDotImage, (startPoint[1], startPoint[0])) pygame.display.update() print("debugging")
def Qtesting(self): self.resetGameForTraining() while self.isGameOver() == False: for event in pygame.event.get(): if event.type == pygame.QUIT: gameExit = True self.sendStateVars() self.calc_receive() for keeper in self.keeperArray: keeper.isInTraining = False keeper.decisionFlowChart() for taker in self.takerArray: taker.decisionFlowChart() newBallPoint = kUtil.addVectorToPoint(self.fieldBall.trueBallPos, kUtil.scalarMultiply(self.maxBallSpeed, kUtil.unitVector(self.fieldBall.trueBallDirection))) self.fieldBall.updateCoordinate(newBallPoint) for i in range(len(self.takerArray)): self.takerArray[i].noisyBallPos = kUtil.getNoisyVals(self.fieldBall.trueBallPos, self.takerArray[i].sigma) for i in range(len(self.keeperArray)): self.keeperArray[i].noisyBallPos = kUtil.getNoisyVals(self.fieldBall.trueBallPos, self.keeperArray[i].sigma) self.updateBallPosession() self.updateScore() self.drawWorld () self.displayScore() pygame.display.update() #this specifies frames per second self.clock.tick(self.fps) if self.isGameOver() == True: gameExit = True print("final score: ", self.keeperScore) self.finish() #self.pause("Game Over: Final Score %d" % self.keeperScore) self.exitSim()
def __getRotatedVectors(self, vector, cos_k): """ FUNCTION NOT USED IN FINAL IMPLEMENTATION This function will calculate 2 other angles that the agent can kick the ball to. If the agent has calculated a direct path from itself to another keeper, that should be the input vector. If the agent is interested in passing at a 5 degree angle, then the 2nd input should be the cosine of 5 degrees. This function will then calculate and return the 2 unit vectors which are the vectors pointing at 5 degree angles :param vector: the vector that points directly from the ball's noisy position to the noisy position of the keeper the agent wants to pass to :param cos_k: the cosine of the angle that the agent wants to pass at. The reason cosine is used instead of the angle is for computational efficiency :type vector: list or tuple of numbers :type cos_k: number :returns: a list of 2 unit vectors, each one representing the 2 directions that the ball can be kicked to achieve the desired angle. :rtype: list of tuples, each tuple being a tuple of floats. """ discriminantIsZero = False terminalPosCosZero = kUtil.addVectorToPoint(self.noisyBallPos, vector) vector = kUtil.unitVector(vector) ax = vector[1] #columns are x ay = vector[0] #rows are y k = cos_k term1 = 2*k*ax #term 1 = -b discriminant = term1 * term1 - 4 * (ax*ax +ay*ay)*(-1.0*ay*ay + k * k) discriminant = math.sqrt(discriminant) if (abs(discriminant) < 0.00001): discriminantIsZero = True #denominator = 2 * (ax*ax + ay*ay) #should be 2 every time if A is a unit vector denominator = 2 #should be 2 every time if A is a unit vector bx1 = (term1 - discriminant) / denominator #print "term1: ", term1, " discriminant:", discriminant, " denominator: ", denominator by1 = math.sqrt(1.0 - (bx1 * bx1)) returnUnitVectors = [] #make it (row,col) format, so therefore it's (y,x) returnUnitVectors.append((by1, bx1)) returnUnitVectors.append((-1.0 * by1, bx1)) if discriminantIsZero == False: bx2 = (term1 + discriminant) / denominator by2 = math.sqrt(1.0 - (bx2 * bx2)) returnUnitVectors.append((by2, bx2)) returnUnitVectors.append((-1.0 * by2, bx2)) #print "return vectors" #print returnVectors returnUnitVectors = sorted(returnUnitVectors, key=lambda x: kUtil.getSqrDist(terminalPosCosZero, x)) return returnUnitVectors[:2]
def __agentBallIntersection(self, inputAgent, agentType): """ This private function will take an input agent, and check to see if that agent intersects with the ball or not. If so, return true. otherwise return false. :param inputAgent: the agent that you're checking to see if it intersects with the ball or not. :param agentType: "keeper" or "taker" :type inputAgent: agent :type agentType: string :returns: true if the agent intersects with the ball, false otherwise :rtype: boolean """ # print if agentType == "keeper": agentTruePosition = self.keeperTruePosArray[inputAgent.getSimIndex()] else: # agent must be a taker agentTruePosition = self.takerTruePosArray[inputAgent.getSimIndex()] agentRadius = self.__agent_block_size / 2 ballRadius = self.ball_block_size / 2 cutoff = agentRadius + ballRadius agentMidPoint = kUtil.addVectorToPoint( agentTruePosition, (self.__agent_block_size / 2, self.__agent_block_size / 2) ) ballMidPoint = kUtil.addVectorToPoint( self.fieldBall.trueBallPos, (self.ball_block_size / 2, self.ball_block_size / 2) ) # print "agent actual:", inputAgent.true_pos, "agentMid:", agentMidPoint # print "agentMid:", agentMidPoint, " ballMid:", ballMidPoint distBetweenMidPoints = kUtil.getDist(agentMidPoint, ballMidPoint) # print "Cutoff: ", cutoff, " actual Distance: ", distBetweenMidPoints if distBetweenMidPoints <= cutoff: return True else: return False
def calcOptimal(self, agentList, i, intersect): V = kUtil.getVector(self.fieldBall.trueBallPos, intersect) UV = kUtil.unitVector(V) stepVector = kUtil.scalarMultiply(self.maxBallSpeed, UV) #keep adding the step vector to the optimal point optimalPoint = self.fieldBall.trueBallPos maxNumSteps = int(kUtil.getDist(self.fieldBall.trueBallPos, intersect)/ self.maxBallSpeed) stepCount = 0 for k in range(maxNumSteps): optimalPoint = kUtil.addVectorToPoint(optimalPoint, stepVector) stepCount += 1 currPd = kUtil.getDist(optimalPoint,agentList[i].true_pos) currBd = kUtil.getDist(self.fieldBall.trueBallPos, optimalPoint) currPt = currPd / self.maxPlayerSpeed currBt = currBd / self.maxBallSpeed if currPt < currBt: #found the optimal, so return it return optimalPoint #if you get here, then no closer optimal was found, so just return the intersect return intersect
def QTraining(self,totalTraining): for training in range(totalTraining): print("Training number :",training) if training%100 == 0: self.displayGraphics = True else: self.displayGraphics = False self.resetGameForTraining() while self.isGameOver() == False: for event in pygame.event.get(): if event.type == pygame.QUIT: gameExit = True self.sendStateVars() reward = 100000 for keeper in self.keeperArray: keeper.updateReward(reward) self.calc_receive() for keeper in self.keeperArray: keeper.isInTraining = True keeper.decisionFlowChart() for taker in self.takerArray: taker.decisionFlowChart() newBallPoint = kUtil.addVectorToPoint(self.fieldBall.trueBallPos, kUtil.scalarMultiply(self.maxBallSpeed, kUtil.unitVector(self.fieldBall.trueBallDirection))) self.fieldBall.updateCoordinate(newBallPoint) for i in range(len(self.takerArray)): self.takerArray[i].noisyBallPos = kUtil.getNoisyVals(self.fieldBall.trueBallPos, self.takerArray[i].sigma) for i in range(len(self.keeperArray)): self.keeperArray[i].noisyBallPos = kUtil.getNoisyVals(self.fieldBall.trueBallPos, self.keeperArray[i].sigma) self.updateBallPosession() self.updateScore() if(self.displayGraphics == True): self.drawWorld () self.displayScore() pygame.display.update() if self.isGameOver(): reward = -100 self.sendStateVars() for keeper in self.keeperArray: keeper.updateFinalReward(reward) self.clock.tick(10000)
def commonFunctionality(self, mode, showDisplay = True, turnOnGrid = False, prettyGrid = False): #this is common code that will occur regardless of what agent you picked #if (self.fieldBall.inPosession == False): newBallPoint = kUtil.addVectorToPoint(self.fieldBall.trueBallPos, kUtil.scalarMultiply(self.maxBallSpeed, kUtil.unitVector(self.fieldBall.trueBallDirection))) self.fieldBall.updateCoordinate(newBallPoint) for i in range(len(self.takerArray)): self.takerArray[i].noisyBallPos = kUtil.getNoisyVals(self.fieldBall.trueBallPos, self.takerArray[i].getSigma()) for i in range(len(self.keeperArray)): self.keeperArray[i].noisyBallPos = kUtil.getNoisyVals(self.fieldBall.trueBallPos, self.keeperArray[i].getSigma()) self.__updateBallPosession() self.__updateScore() #remove this line if you don't want the grid to be drawn if showDisplay: if (turnOnGrid): gridList = self.bev.getBirdsEyeViewAsList(self.keeperArray, self.takerArray) substrate = self.bev.getSubstrate(self.keeperArray, self.takerArray) self.__drawWorld (mode, gridList, substrate, prettyGrid) else: self.__drawWorld(mode) self.__displayScore() pygame.display.update()
def __calc_receive_ball_moving(worldRef, inputDirection, possessingKeeperIndex): """ This function is a private function meant to assist calc_receive. This function will go and calculate the receive decision for the special case where the ball is moving. The receive decision is a tuple that simply contains the index of the keeper that should run towards the ball, and the coordinate that the keeper should run to. If the ball is moving, then calc_receieve will find an intersection point along the balls projected path that the selected keeper can run to. The intercept point is selected such that the selected keeper will run a short distance, be far away from the takers, and also be far away from out of bounds. .. note:: This is a private function that the user shouldn't worry about calling. Only the calc_receieve function of this method will use this function. And only the simulator class should call the calc_receive function. :param worldRef: a reference to the simulator class which is calling this function :param inputDirection: the current direction the ball is moving. :param possessingKeeperIndex: the index of the keeper who currently has possession :type worldRef: keepAway :type inputDirection: tuple of floats :type possessingKeeperIndex: integer :returns: tuple, where first element is the index of the keeper picked to run towards the ball. The simulator will use this index to look up the index of the keeper in its self.keeperArray. The 2nd element is the intersection coordinate :rtype: tuple where first element is integer, second element is tuple. 2nd element tuple contains integers """ #TA is a point that the ball is heading to in the next time step TA = kUtil.addVectorToPoint(worldRef.fieldBall.trueBallPos, inputDirection) #TB is the current ball position, and for angle calculations, it will be the vertex TB = worldRef.fieldBall.trueBallPos minTime = float("inf") argmin = None bestPerpIntersect = None #the purpose of this for loop is to find which keeper should go to the ball. for i in range(len(worldRef.keeperArray)): #TC is the position of the keeper who's figuring out if he should goToBall(), or getOpen() TC = worldRef.keeperTruePosArray[i] if (kUtil.cosTheta(TA, TB, TC)) < 0: #print "Keeper " , i, " can't get to ball: the cosTheta is negetive." #it's impossible for this keeper to get the ball continue else: pd = kUtil.getPerpDist(TA, TB, TC) pt = pd/worldRef.maxPlayerSpeed normalVector = kUtil.getNormalVector(TA, TB, TC) perpIntersect = kUtil.addVectorToPoint(TC, normalVector) bd = kUtil.getDist(TB, perpIntersect) bt = bd/worldRef.maxBallSpeed if pt > bt: #keeper wont' be able be able to get to ball in time #print "player ", i+1, "can't reach ball as pt:",pt," and bt: ",bt continue else: #keeper CAN get to ball. can it get there soonest though? #save the fastest keeper if (pt < minTime and i != possessingKeeperIndex): minTime = pt argmin = i bestPerpIntersect = perpIntersect #at this point, if a keeper can get to the ball, #the fastest and it's intercept are saved if (argmin != None): rDecision = [argmin, __calcOptimal(worldRef, worldRef.keeperArray, argmin, bestPerpIntersect)] return rDecision else: rDecision = [1 , worldRef.get_field_center()] #print("no argmin found. game about to end for sure.") return rDecision
def __calcOptimal(worldRef, agentList, i, intersect): """ This function is a private function meant to assist another private function called __calc_receive_ball_moving. once __calc_receive_ball_moving has calculated the intersection point, there's one last step: to make sure that the intersection point isn't too close to the out of bounds area. If the intersection point too close to out of bounds, then return an intersection point along the path that the ball is traveling, but is just still safely away from the out of bounds areas. .. note:: This is a private function that the user shouldn't worry about calling. Only the calc_receive function should be called. :param worldRef: a reference to the simulator class which is calling this function :param agentList: a list provided by the simulator of all agents :param i: the index of the agent running to the ball for the list agentList :param intersect: the intersection point that has been calculated, and might be too close to out of bounds :type worldRef: keepAway class :type agentList: a list where each element is an agent class :type i: integer :type intersect: a tuple of floats :returns: the intersection coordinate which is safely within bounds, or the original intersection point if no such point is found :rtype: tuple of floats """ #if the intersect is in bounds, just go to it. no calculations needed if __isPointOutOfPlayRegion(worldRef, intersect, agentList, i) == False: #print("point in bounds, return intersect") return intersect #V = vector from agent's perpendicular intercept to the ball V = kUtil.getVector(intersect, worldRef.fieldBall.trueBallPos) #turn V into a unit vector and multipy it by the speed of the ball to get velocity vector UV = kUtil.unitVector(V) stepVector = kUtil.scalarMultiply(worldRef.maxBallSpeed, UV) #the optimal point is intialized to the intersect, and #the intersect is currently out of bounds. #keep adding the step vector to the optimal point until #the intersect is no longer out of bounds optimalPoint = intersect maxNumSteps = int(kUtil.getDist(worldRef.fieldBall.trueBallPos, intersect)/ worldRef.maxBallSpeed) stepCount = 0 #if you can't get to the ball in maxNumSteps, then it's hopeless. simply #return the intersection point. Your agent will fail and the ball will #go out of bounds, but there's nothing that can be done for k in range(maxNumSteps): optimalPoint = kUtil.addVectorToPoint(optimalPoint, stepVector) stepCount += 1 if __isPointOutOfPlayRegion(worldRef, optimalPoint, agentList, i) == False: #print("Optimal found, returning optimal point:", optimalPoint) return optimalPoint #if you get here, then no closer optimal was found #print("no optimal found, returning intersect", intersect) return intersect
def gameLoop(self, mode): """ This is the main game loop. Each iteration of this counts as a tick. With each tick, an agent can move keepAway.maxPlayerSpeed units, and the ball can move keepAway.maxBallSpeed units. At the end of each tick, the pygame screen is updated to the next frame. :returns: no return """ self.__drawWorld() gameExit = False pygame.display.update() experimentAgent = self.keeperArray[0] # each occurance of this loop is treated as one simulation cycle while not gameExit: if mode == "manual": for event in pygame.event.get(): if event.type == pygame.QUIT: gameExit = True if event.type == pygame.KEYDOWN: if event.key == pygame.K_LEFT: self.moveAttempt(experimentAgent, ((0, -1), self.maxPlayerSpeed)) elif event.key == pygame.K_RIGHT: self.moveAttempt(experimentAgent, ((0, 1), self.maxPlayerSpeed)) elif event.key == pygame.K_UP: self.moveAttempt(experimentAgent, ((-1, 0), self.maxPlayerSpeed)) elif event.key == pygame.K_DOWN: self.moveAttempt(experimentAgent, ((1, 0), self.maxPlayerSpeed)) elif event.key == pygame.K_1: self.moveAttempt(experimentAgent, ((-1, -1), self.maxPlayerSpeed)) elif event.key == pygame.K_2: self.moveAttempt(experimentAgent, ((-1, 1), self.maxPlayerSpeed)) elif event.key == pygame.K_3: self.moveAttempt(experimentAgent, ((1, -1), self.maxPlayerSpeed)) elif event.key == pygame.K_4: self.moveAttempt(experimentAgent, ((1, 1), self.maxPlayerSpeed)) elif mode == "hand_coded": for event in pygame.event.get(): if event.type == pygame.QUIT: gameExit = True self.sendCalcReceiveDecision() self.sendSimpleStateVars() for keeper in self.keeperArray: keeper.decisionFlowChart() for taker in self.takerArray: taker.decisionFlowChart() elif mode == "sarsa": for event in pygame.event.get(): if event.type == pygame.QUIT: gameExit = True self.sendCalcReceiveDecision() self.sendSimpleStateVars() # this is common code that will occur regardless of what agent you picked # if (self.fieldBall.inPosession == False): newBallPoint = kUtil.addVectorToPoint( self.fieldBall.trueBallPos, kUtil.scalarMultiply(self.maxBallSpeed, kUtil.unitVector(self.fieldBall.trueBallDirection)), ) self.fieldBall.updateCoordinate(newBallPoint) for i in range(len(self.takerArray)): self.takerArray[i].noisyBallPos = kUtil.getNoisyVals( self.fieldBall.trueBallPos, self.takerArray[i].getSigma() ) for i in range(len(self.keeperArray)): self.keeperArray[i].noisyBallPos = kUtil.getNoisyVals( self.fieldBall.trueBallPos, self.keeperArray[i].getSigma() ) self.__updateBallPosession() self.__updateScore() self.__drawWorld() self.__displayScore() pygame.display.update() if self.isGameOver() == True: gameExit = True print("final score: ", self.keeperScore) # this specifies frames per second self.clock.tick(self.test_fps) self.__finish() # self.pause("Game Over: Final Score %d" % self.keeperScore) self.__exitSim()
def gameLoop(self, mode): self.drawWorld () gameExit = False if(self.displayGraphics == True): pygame.display.update() experimentAgent = self.takerArray[0] #each occurance of this loop is treated as one simulation cycle while not gameExit: if(mode == "manual"): for event in pygame.event.get(): if event.type == pygame.QUIT: gameExit = True if event.type == pygame.KEYDOWN: if event.key == pygame.K_LEFT: self.moveAttempt(experimentAgent, ((0,-1), self.maxPlayerSpeed)) elif event.key == pygame.K_RIGHT: self.moveAttempt(experimentAgent, ((0,1), self.maxPlayerSpeed)) elif event.key == pygame.K_UP: self.moveAttempt(experimentAgent, ((-1,0), self.maxPlayerSpeed)) elif event.key == pygame.K_DOWN: self.moveAttempt(experimentAgent, ((1,0), self.maxPlayerSpeed)) elif event.key == pygame.K_1: self.moveAttempt(experimentAgent, ((-1,-1), self.maxPlayerSpeed)) elif event.key == pygame.K_2: self.moveAttempt(experimentAgent, ((-1,1), self.maxPlayerSpeed)) elif event.key == pygame.K_3: self.moveAttempt(experimentAgent, ((1,-1), self.maxPlayerSpeed)) elif event.key == pygame.K_4: self.moveAttempt(experimentAgent, ((1,1), self.maxPlayerSpeed)) elif (mode == "hand_coded"): for event in pygame.event.get(): if event.type == pygame.QUIT: gameExit = True self.sendStateVars() self.calc_receive() for keeper in self.keeperArray: keeper.decisionFlowChart() for taker in self.takerArray: taker.decisionFlowChart() elif(mode == "q_learning"): totalTraining = 5 flag = False for index in range(len(self.keeperArray)): if self.keeperArray[index].load_obj("dict",index, mode) == None: flag = True if flag: print("no files exist") self.QTraining(totalTraining) for index in range(len(self.keeperArray)): self.keeperArray[index].save_obj(self.keeperArray[index].q_values,"dict",index, mode) #for key in list(self.keeperArray[index].q_values.keys())[:10]: #print("QValues of ",index," agent is: key=",key," value=",self.keeperArray[index].q_values[key]) self.Qtesting() else: print("files exist, continue training") totalTraining = 0 for index in range(len(self.keeperArray)): self.keeperArray[index].q_values = self.keeperArray[index].load_obj("dict",index, mode) #for key in list(self.keeperArray[index].q_values.keys())[:10]: #print("QValues of ",index," agent is: key=",key," value=",self.keeperArray[index].q_values[key]) self.QTraining(totalTraining) for index in range(len(self.keeperArray)): self.keeperArray[index].save_obj(self.keeperArray[index].q_values,"dict",index, mode) self.Qtesting() elif(mode == "sarsa"): totalTraining = 5 flag = False for index in range(len(self.keeperArray)): if self.keeperArray[index].load_obj("dict",index, mode) == None: flag = True if flag: print("no files exist") self.QTraining(totalTraining) for index in range(len(self.keeperArray)): self.keeperArray[index].save_obj(self.keeperArray[index].q_values,"dict",index, mode) #for key in list(self.keeperArray[index].q_values.keys())[:10]: #print("QValues of ",index," agent is: key=",key," value=",self.keeperArray[index].q_values[key]) self.Qtesting() else: print("files exist, continue training") totalTraining = 0 for index in range(len(self.keeperArray)): self.keeperArray[index].q_values = self.keeperArray[index].load_obj("dict",index, mode) #for key in list(self.keeperArray[index].q_values.keys())[:10]: #print("QValues of ",index," agent is: key=",key," value=",self.keeperArray[index].q_values[key]) self.QTraining(totalTraining) for index in range(len(self.keeperArray)): self.keeperArray[index].save_obj(self.keeperArray[index].q_values,"dict",index, mode) self.Qtesting() #this is common code that will occur regardless of what agent you picked #if (self.fieldBall.inPosession == False): newBallPoint = kUtil.addVectorToPoint(self.fieldBall.trueBallPos, kUtil.scalarMultiply(self.maxBallSpeed, kUtil.unitVector(self.fieldBall.trueBallDirection))) self.fieldBall.updateCoordinate(newBallPoint) for i in range(len(self.takerArray)): self.takerArray[i].noisyBallPos = kUtil.getNoisyVals(self.fieldBall.trueBallPos, self.takerArray[i].sigma) for i in range(len(self.keeperArray)): self.keeperArray[i].noisyBallPos = kUtil.getNoisyVals(self.fieldBall.trueBallPos, self.keeperArray[i].sigma) self.updateBallPosession() self.updateScore() self.drawWorld () self.displayScore() pygame.display.update() if self.isGameOver() == True: gameExit = True print("final score: ", self.keeperScore) #this specifies frames per second self.clock.tick(self.fps) self.finish() #self.pause("Game Over: Final Score %d" % self.keeperScore) self.exitSim()
def moveAgent(self, inputAgent, movementVector): newNoiseFreePos = kUtil.addVectorToPoint(inputAgent.true_pos, movementVector) inputAgent.updateAgentPosition(newNoiseFreePos) return inputAgent.true_pos