Esempio n. 1
0
def test_sir_lin_pca_strat():

    NUM_STEPS = 70
    SIR_PCA_ITER_STEPS = 1 #Number of steps between each recomputation of PCA Templates.
    'PCA Strategy Parameters'
    SIR_PCA_TRAJ_STEPS = 1 #Number of steps our sample trajectories should run.
    SIR_PCA_NUM_TRAJ = 100 #Number of sample trajectories we should use for the PCA routine.
    SIR_LIN_ITER_STEPS = 1
    #
    SIR_PCA_LIFE_SPAN = 3

    sir_pca = SIR_UnitBox(delta=0.5)
    sir_plot = Plot()

    points = [[0.79,0.19,0], [0.79, 0.2,0], [0.8,0.19,0], [0.8,0.2,0], [0.79,0.195,0], [0.8,0.195,0], [0.795,0.19,0],  [0.795,0.2,0]]
    trajs = [Traj(sir_pca, point, NUM_STEPS) for point in points]

    pca_strat = MultiStrategy(LinStrat(sir_pca, iter_steps=SIR_LIN_ITER_STEPS), \
                              DelayedPCAStrat(sir_pca, traj_steps=SIR_PCA_TRAJ_STEPS, num_trajs=SIR_PCA_NUM_TRAJ, life_span=SIR_PCA_LIFE_SPAN))

    sir_pca_reach = ReachSet(sir_pca)
    sir_flow_pca = sir_pca_reach.computeReachSet(NUM_STEPS, tempstrat=pca_strat)
    sir_plot.add(sir_flow_pca, "SIR_LinApp&PCA")

    'Add trajectories'
    for traj in trajs:
        sir_plot.add(traj)

   # sir_plot.plot2DPhase(0,1,separate=False, plotvertices=True)
    sir_plot.plot2DPhase(1,2,separate=False, plotvertices=True)
    sir_plot.plot2DPhase(0,2,separate=False, plotvertices=True)

    Timer.generate_stats()
Esempio n. 2
0
def test_ani_pca_lin_VDP():

    NUM_STEPS = 70
    VDP_LIN_ITER_STEPS = 1  #Number of steps between each recomputation of LinApp Templates.
    VDP_PCA_ITER_STEPS = 1  #Number of steps between each recomputation of PCA Templates.
    'PCA Strategy Parameters'
    VDP_PCA_TRAJ_STEPS = 2  #Number of steps our sample trajectories should run.
    VDP_PCA_NUM_TRAJ = 200  #Number of sample trajectories we should use for the PCA routine.
    VDP_LIN_DELAY = 2
    VDP_PCA_DELAY = 5

    model = VanDerPol(delta=0.08)
    unit_model = VanDerPol_UnitBox(delta=0.08)

    lin_1 = LinStrat(unit_model, iter_steps=VDP_LIN_ITER_STEPS)
    lin_2 = LinStrat(unit_model, iter_steps=VDP_LIN_ITER_STEPS + VDP_LIN_DELAY)
    pca_1 = PCAStrat(unit_model,
                     traj_steps=VDP_PCA_TRAJ_STEPS,
                     num_trajs=VDP_PCA_NUM_TRAJ,
                     iter_steps=VDP_PCA_ITER_STEPS)
    pca_2 = PCAStrat(unit_model,
                     traj_steps=VDP_PCA_TRAJ_STEPS,
                     num_trajs=VDP_PCA_NUM_TRAJ,
                     iter_steps=VDP_PCA_ITER_STEPS + VDP_PCA_DELAY)

    lin_strat = MultiStrategy(lin_1, lin_2, pca_1, pca_2)

    inputs = ExperimentInput(unit_model, strat=lin_strat, label="VDP Kaa")
    vdp_pca = Animation(inputs)
    vdp_pca.execute(NUM_STEPS)
    vdp_pca.animate(0, 1, lin_1, lin_2)
    #vdp_pca.animate(0,1, lin_2)
    #vdp_pca.animate(0,1, pca_2)

    Timer.generate_stats()
Esempio n. 3
0
def test_pca_lin_Rossler():
    NUM_STEPS = 5
    ROSS_PCA_ITER_STEPS = 1 #Number of steps between each recomputation of PCA Templates.
    'PCA Strategy Parameters'
    ROSS_PCA_TRAJ_STEPS = 1 #Number of steps our sample trajectories should run.
    ROSS_PCA_NUM_TRAJ = 200 #Number of sample trajectories we should use for the PCA routine.

    rossler_pca = Rossler_UnitBox(delta=0.5)
    rossler_plot = Plot()

    points = [[0.05,4.95,0.05], [0.1,4.95,0.05], [0.05,5,0.05], [0.1,5,0.05], [0.05,4.95,0.05], [0.05,4.95,0.1], [0.1,4.95,0.1], [0.1,5,0.1]]
    trajs = [Traj(rossler_pca, point, NUM_STEPS) for point in points]

    pca_strat = PCALinStrat(rossler_pca, traj_steps=ROSS_PCA_TRAJ_STEPS, num_trajs=ROSS_PCA_NUM_TRAJ, iter_steps=ROSS_PCA_ITER_STEPS)

    ross_pca_reach = ReachSet(rossler_pca)
    ross_flow_pca = ross_pca_reach.computeReachSet(NUM_STEPS, tempstrat=pca_strat)
    rossler_plot.add(ross_flow_pca, "SIR_LinApp&PCA")

    'Add trajectories'
    for traj in trajs:
        rossler_plot.add(traj)

    rossler_plot.plot2DPhase(0,1,separate=True, plotvertices=True)
    Timer.generate_stats()
Esempio n. 4
0
def test_lin_HarOsc():

    NUM_STEPS = 5

    model = HarOsc()
    #trajs = generate_traj(model, 10, 200)
    mod_reach = ReachSet(model)
    #mod_flow = mod_reach.computeReachSet()

    sir_plot = Plot()

    #mod_flow = mod_reach.computeReachSet(NUM_STEPS)

    SIR_LIN_ITER_STEPS = 1 #Number of steps between each recomputation of PCA Templates.

    lin_strat = LinStrat(model, iter_steps=SIR_LIN_ITER_STEPS)
    mod_lin_flow = mod_reach.computeReachSet(NUM_STEPS, tempstrat=lin_strat, transmode=BundleMode.AFO)
    trajs = [Traj(model, point, steps=NUM_STEPS) for point in product([-5,-4],[0,1])]

    'Generaste the trajectories and add them to the plot.'
    sir_plot.add(mod_lin_flow, "HarOsc LINAPP")
    for t in trajs:
        sir_plot.add(t)

    sir_plot.plot2DPhase(0,1, separate=True, plotvertices=True)

    Timer.generate_stats()
Esempio n. 5
0
def test_pca_VDP():

    NUM_STEPS = 3

    model = VanDerPol(delta=0.08)
    unit_model = VanDerPol_UnitBox(delta=0.08)

    VDP_PCA_ITER_STEPS = 1  #Number of steps between each recomputation of PCA Templates.
    'PCA Strategy Parameters'
    VDP_PCA_TRAJ_STEPS = 5  #Number of steps our sample trajectories should run.
    VDP_PCA_NUM_TRAJ = 50  #Number of sample trajectories we should use for the PCA routine.
    VDP_PCA_DELAY = 5

    pca_dirs = GeneratedPCADirs(model, VDP_PCA_NUM_TRAJ, NUM_STEPS)
    pca_strat = MultiStrategy(PCAStrat(unit_model, traj_steps=VDP_PCA_TRAJ_STEPS, num_trajs=VDP_PCA_NUM_TRAJ, iter_steps=VDP_PCA_ITER_STEPS, pca_dirs=pca_dirs), \
                              PCAStrat(unit_model, traj_steps=VDP_PCA_TRAJ_STEPS, num_trajs=VDP_PCA_NUM_TRAJ, iter_steps=VDP_PCA_ITER_STEPS+VDP_PCA_DELAY, pca_dirs=pca_dirs), \
                              PCAStrat(unit_model, traj_steps=VDP_PCA_TRAJ_STEPS, num_trajs=VDP_PCA_NUM_TRAJ, iter_steps=VDP_PCA_ITER_STEPS+2*VDP_PCA_DELAY, pca_dirs=pca_dirs))

    inputs = [
        ExperimentInput(model, label="VDP Sapo"),
        ExperimentInput(unit_model, strat=pca_strat, label="VDP Kaa PCA")
    ]

    vdp_pca = PhasePlotExperiment(inputs)
    vdp_pca.execute(NUM_STEPS)
    vdp_pca.plot_results(0, 1)

    Timer.generate_stats()
Esempio n. 6
0
def test_pca_HarOsc():

    NUM_STEPS = 4

    model = HarOsc()
    #trajs = generate_traj(model, 10, 200)
    mod_reach = ReachSet(model)
    #mod_flow = mod_reach.computeReachSet()

    sir_plot = Plot()

    SIR_PCA_ITER_STEPS = 1 #Number of steps between each recomputation of PCA Templates.
    'PCA Strategy Parameters'
    SIR_PCA_TRAJ_STEPS = 2 #Number of steps our sample trajectories should run.
    SIR_PCA_NUM_TRAJ = 100 #Number of sample trajectories we should use for the PCA routine.

    pca_strat = PCAStrat(model, traj_steps=SIR_PCA_TRAJ_STEPS, num_trajs=SIR_PCA_NUM_TRAJ, iter_steps=SIR_PCA_ITER_STEPS)
    mod_pca_flow = mod_reach.computeReachSet(NUM_STEPS, tempstrat=[pca_strat], transmode=BundleMode.AFO)
    #trajs = generate_traj(model, 10, 200)

    'Generaste the trajectories and add them to the plot.'
    sir_plot.add(mod_pca_flow, "HarOsc PCA")
    sir_plot.plot2DPhase(0,1, separate=True, plotvertices=True)
    
    Timer.generate_stats()
Esempio n. 7
0
def test_pca_lin_VDP():

    NUM_STEPS = 70
    VDP_LIN_ITER_STEPS = 1  #Number of steps between each recomputation of LinApp Templates.
    VDP_PCA_ITER_STEPS = 1  #Number of steps between each recomputation of PCA Templates.
    'PCA Strategy Parameters'
    VDP_PCA_TRAJ_STEPS = 2  #Number of steps our sample trajectories should run.
    VDP_PCA_NUM_TRAJ = 200  #Number of sample trajectories we should use for the PCA routine.
    VDP_LIN_DELAY = 2
    VDP_PCA_DELAY = 5

    model = VanDerPol(delta=0.08)
    unit_model = VanDerPol_UnitBox(delta=0.08)

    lin_strat = MultiStrategy(LinStrat(unit_model, iter_steps=VDP_LIN_ITER_STEPS), \
                              LinStrat(unit_model, iter_steps=VDP_LIN_ITER_STEPS+VDP_LIN_DELAY), \
                              PCAStrat(unit_model, traj_steps=VDP_PCA_TRAJ_STEPS, num_trajs=VDP_PCA_NUM_TRAJ, iter_steps=VDP_PCA_ITER_STEPS), \
                              PCAStrat(unit_model, traj_steps=VDP_PCA_TRAJ_STEPS, num_trajs=VDP_PCA_NUM_TRAJ, iter_steps=VDP_PCA_ITER_STEPS+VDP_PCA_DELAY))

    inputs = [
        ExperimentInput(model, label="VDP Sapo"),
        ExperimentInput(unit_model, strat=lin_strat, label="VDP Kaa")
    ]
    vdp_pca = PhasePlotExperiment(inputs)
    vdp_pca.execute(NUM_STEPS)
    vdp_pca.plot_results(0, 1)

    Timer.generate_stats()
Esempio n. 8
0
def test_sir_pca_strat():

    #Compute Sapo's version.3
    sir_pca = SIR_UnitBox(delta=0.5)
    sir = SIR(delta=0.5)

    sir_reach = ReachSet(sir)
    sir_flow = sir_reach.computeReachSet(NUM_STEPS)
    sir_plot = Plot()
    sir_plot.add(sir_flow, "SIR SAPO")

    for i in range(ITER_SPREAD, ITER_SPREAD + 1):
        print(
            colored("Generating PCA with Iterative Step Size: {}".format(i),
                    "white",
                    attrs=['reverse', 'blink']))
        sir_pca_reach = ReachSet(sir_pca)
        sir_flow_pca = sir_pca_reach.computeReachSet(
            NUM_STEPS,
            tempstrat=PCAStrat(sir_pca, iter_steps=i),
            transmode=BundleMode.AFO)
        sir_plot.add(sir_flow_pca, "SIR_PCA_{}".format(i))

    sir_plot.plot2DPhase(0, 1, separate=False, plotvertices=True)
    #sir_plot.plot(0,1,2)
    Timer.generate_stats()
    """
Esempio n. 9
0
def test_sir_lin_strat():

    #Compute Sapo's version.
    sir_lin = SIR_UnitBox(delta=0.5)
    sir = SIR()
    #sir_reach = ReachSet(sir)

    #sir_flow = sir_reach.computeReachSet(NUM_STEPS)
    sir_plot = Plot()
    #sir_plot.add(sir_flow)

    for i in range(10, 11):
        print(
            colored(
                "Generating Lin_Approx with Iterative Step Size: {}".format(i),
                "white",
                attrs=['reverse', 'blink']))
        sir_lin_reach = ReachSet(sir_lin)
        sir_flow_lin = sir_lin_reach.computeReachSet(
            NUM_STEPS, LinStrat(sir_lin, iter_steps=i))
        sir_plot.add(sir_flow_lin, "SIR_LIN_{}".format(i))

    #sir_plot.plot(0,1,2)
    sir_plot.plot2DPhase(0, 1, separate=True)
    Timer.generate_stats()
    """
Esempio n. 10
0
def test_LL():

    model = LL()
    mod_reach = ReachSet(model)
    mod_flow = mod_reach.computeReachSet(150)

    FlowPipePlotter(mod_flow).plot2DProj(3)

    Timer.generate_stats()
Esempio n. 11
0
def test_Quad():

    model = Quadcopter()
    mod_reach = ReachSet(model)
    mod_flow = mod_reach.computeReachSet(10)

    FlowPipePlotter(mod_flow).plot2DProj(2)
    FlowPipePlotter(mod_flow).plot2DProj(5)
    FlowPipePlotter(mod_flow).plot2DProj(13)
    Timer.generate_stats()
Esempio n. 12
0
def test_VDP():
    NUM_STEPS = 1

    model = VanDerPol(delta=0.08)

    vdp_sapo = PhasePlotExperiment([ExperimentInput(model, label="VDP Sapo")])
    vdp_sapo.execute(NUM_STEPS)

    vdp_sapo.plot_results(0, 1)
    Timer.generate_stats()
Esempio n. 13
0
def test_basic2():

    basic_mod = Basic2()
    basic_reach = ReachSet(basic_mod)
    flowpipe = basic_reach.computeReachSet(300)

    basic_plot = Plot()
    basic_plot.add(flowpipe)
    basic_plot.plot(0)

    Timer.generate_stats()
Esempio n. 14
0
def test_rossler_phase():

    model = Rossler()
    mod_reach = ReachSet(model)
    mod_flow = mod_reach.computeReachSet(200)

    rossler_plot = Plot()
    rossler_plot.add(mod_flow)
    rossler_plot.plot2DPhase(0,1)

    Timer.generate_stats()
Esempio n. 15
0
def test_Quad():

    model = Quadcopter()
    mod_reach = ReachSet(model)
    mod_flow = mod_reach.computeReachSet(3)

    quad_plot = Plot()
    quad_plot.add(mod_flow)
    quad_plot.plot(2, 5, 13)

    Timer.generate_stats()
Esempio n. 16
0
def test_Rossler():

    model = Rossler()
    mod_reach = ReachSet(model)
    mod_flow = mod_reach.computeReachSet(300)

    rossler_plot = Plot()
    rossler_plot.add(mod_flow)
    rossler_plot.plot(0,1,2)

    Timer.generate_stats()
Esempio n. 17
0
def test_LV():

    model = LotkaVolterra()
    mod_reach = ReachSet(model)
    mod_flow = mod_reach.computeReachSet(100)

    plot = Plot()
    plot.add(mod_flow)
    plot.plot(0,1,2)

    Timer.generate_stats()
Esempio n. 18
0
def test_LL():

    model = LL()
    mod_reach = ReachSet(model)
    mod_flow = mod_reach.computeReachSet(150)

    ll_plot = Plot()
    ll_plot.add(mod_flow)
    ll_plot.plot(0)

    Timer.generate_stats()
Esempio n. 19
0
def test_SIR():

    model = SIR()
    mod_reach = ReachSet(model)

    mod_flow = mod_reach.computeReachSet(200)

    FlowPipePlotter(mod_flow).plot2DProj(0)
    FlowPipePlotter(mod_flow).plot2DProj(1)
    FlowPipePlotter(mod_flow).plot2DProj(2)

    Timer.generate_stats()
Esempio n. 20
0
def test_Phos():

    model = Phosphorelay()
    #unit_model = Phosphorelay_UnitBox()
    mod_reach = ReachSet(model)
    #mod_unit_reach = ReachSet(unit_model)
    #unit_flow = mod_unit_reach.computeReachSet(200)
    mod_flow = mod_reach.computeReachSet(30)

    phos_plot = Plot()
    phos_plot.add(mod_flow)
    phos_plot.plot2DPhase(0, 1, separate=False, plotvertices=True)

    Timer.generate_stats()
Esempio n. 21
0
def test_OscPart():

    model = OscPart()
    #trajs = generate_traj(model, 10, 200)
    mod_reach = ReachSet(model)
    mod_flow = mod_reach.computeReachSet(20)

    sir_plot = Plot()
    #trajs = generate_traj(model, 10, 200)

    'Generaste the trajectories and add them to the plot.'
    sir_plot.add(mod_flow)
    sir_plot.plot(0, 1, 2)

    Timer.generate_stats()
Esempio n. 22
0
def pca_lin_comp():

    sir = SIR_UnitBox()
    sir_reach = ReachSet(sir)

    sir_flow = sir_reach.computeReachSet(NUM_STEPS)
    sir_plot = Plot()
    sir_plot.add(sir_flow)

    sir_lin_flow = sir_reach.computeReachSet(NUM_STEPS,
                                             LinStrat(sir, iter_steps=150))
    #sir_pca_flow = sir_reach.computeReachSet(NUM_STEPS, PCAStrat(sir, iter_steps=50))

    sir_plot.add(sir_lin_flow, "SIR_LIN")
    #sir_plot.add(sir_pca_flow, "SIR_PCA")

    sir_plot.plot(0, 1, 2)
    Timer.generate_stats()
Esempio n. 23
0
def test_SIR():

    model = SIR(delta=0.5)
    model_unit = SIR_UnitBox()
    #trajs = generate_traj(model, 10, 200)
    mod_reach = ReachSet(model)
    mod_unit_reach = ReachSet(model_unit)
    mod_flow = mod_reach.computeReachSet(70)
    #mod_unit_flow = mod_unit_reach.computeReachSet(300)

    sir_plot = Plot()
    #trajs = generate_traj(model, 10, 200)

    'Generaste the trajectories and add them to the plot.'
    #for traj in trajs:
    #    sir_plot.add(traj)
    sir_plot.add(mod_flow)
    #sir_plot.add(mod_unit_flow)
    sir_plot.plot2DPhase(0,1)
    
    Timer.generate_stats()
Esempio n. 24
0
def test_sir_cut_strat():

    #Compute Sapo's version.
    sir_cut = SIR()
    sir = SIR_UnitBox()
    sir_reach = ReachSet(sir)

    sir_flow = sir_reach.computeReachSet(NUM_STEPS)
    sir_plot = Plot()
    sir_plot.add(sir_flow)

    sir_cut_reach = ReachSet(sir_cut)
    sir_cut_flow = sir_cut_reach.computeReachSet(NUM_STEPS, CutStrat(sir_cut))

    sir_sapo_flow = sir_cut_reach.computeReachSet(NUM_STEPS)

    sir_plot.add(sir_cut_flow, "SIR_CUT_150")
    sir_plot.add(sir_sapo_flow, "SIR_SAPO")

    sir_plot.plot(0, 1, 2)
    Timer.generate_stats()
Esempio n. 25
0
def test_ani_pca_VDP():

    NUM_STEPS = 70

    #model = VanDerPol(delta=0.08)
    unit_model = VanDerPol_UnitBox(delta=0.08)

    VDP_PCA_ITER_STEPS = 1  #Number of steps between each recomputation of PCA Templates.
    'PCA Strategy Parameters'
    VDP_PCA_TRAJ_STEPS = 5  #Number of steps our sample trajectories should run.
    VDP_PCA_NUM_TRAJ = 100  #Number of sample trajectories we should use for the PCA routine.
    VDP_PCA_DELAY = 5

    pca_1 = PCAStrat(unit_model,
                     traj_steps=VDP_PCA_TRAJ_STEPS,
                     num_trajs=VDP_PCA_NUM_TRAJ,
                     iter_steps=VDP_PCA_ITER_STEPS)
    pca_2 = PCAStrat(unit_model,
                     traj_steps=VDP_PCA_TRAJ_STEPS,
                     num_trajs=VDP_PCA_NUM_TRAJ,
                     iter_steps=VDP_PCA_ITER_STEPS + VDP_PCA_DELAY)
    pca_3 = PCAStrat(unit_model,
                     traj_steps=VDP_PCA_TRAJ_STEPS,
                     num_trajs=VDP_PCA_NUM_TRAJ,
                     iter_steps=VDP_PCA_ITER_STEPS + 2 * VDP_PCA_DELAY)

    pca_strat = MultiStrategy(pca_1, pca_2, pca_3)

    experi_input = ExperimentInput(unit_model,
                                   strat=pca_strat,
                                   label="VDP Kaa PCA")

    vdp_pca = Animation(experi_input)
    vdp_pca.execute(NUM_STEPS)
    vdp_pca.animate(0, 1, pca_1)
    vdp_pca.animate(0, 1, pca_2)
    vdp_pca.animate(0, 1, pca_3)

    Timer.generate_stats()
Esempio n. 26
0
def test_rossler_pca_strat():

    #Compute Sapo's version.
    rossler_pca = Rossler_UnitBox()
    rossler = Rossler()
    rossler_reach = ReachSet(rossler)

    #rossler_flow = rossler_reach.computeReachSet(NUM_STEPS)
    rossler_plot = Plot()
    #rossler_plot.add(rossler_flow)

    for i in range(3, 4):
        print(
            colored("Generating PCA with Iterative Step Size: {}".format(i),
                    "white",
                    attrs=['reverse', 'blink']))
        rossler_pca_reach = ReachSet(rossler_pca)
        rossler_flow_pca = rossler_pca_reach.computeReachSet(
            NUM_STEPS, PCAStrat(rossler_pca, iter_steps=i))
        rossler_plot.add(rossler_flow_pca, "Rossler_PCA_{}".format(i))

    rossler_plot.plot(0, 1, 2)
    Timer.generate_stats()
Esempio n. 27
0
def test_rossler_lin_strat():

    #Compute Sapo's version.
    rossler_lin = Rossler_UnitBox()
    rossler = Rossler()
    rossler_reach = ReachSet(rossler)

    rossler_flow = rossler_reach.computeReachSet(NUM_STEPS)
    rossler_plot = Plot()
    rossler_plot.add(rossler_flow)

    for i in range(10, 11):
        print(
            colored("Generating LIN with Iterative Step Size: {}".format(i),
                    "white",
                    attrs=['reverse', 'blink']))
        rossler_lin_reach = ReachSet(rossler_lin)
        rossler_flow_lin = rossler_lin_reach.computeReachSet(
            NUM_STEPS, LinStrat(rossler_lin, iter_steps=i))
        rossler_plot.add(rossler_flow_lin, "Rossler_LIN_{}".format(i))

    rossler_plot.plot(0, 1, 2)
    Timer.generate_stats()
Esempio n. 28
0
def test_haroscrotate():

    NUM_STEPS = 4

    model = HarOscRotate()
    mod_reach = ReachSet(model)

    mod_flow = mod_reach.computeReachSet(NUM_STEPS)

    SIR_PCA_ITER_STEPS = 1  #Number of steps between each recomputation of PCA Templates.
    'PCA Strategy Parameters'
    SIR_PCA_TRAJ_STEPS = 1  #Number of steps our sample trajectories should run.
    SIR_PCA_NUM_TRAJ = 100  #Number of sample trajectories we should use for the PCA routine.

    #pca_strat = PCAStrat(model, traj_steps=SIR_PCA_TRAJ_STEPS, num_trajs=SIR_PCA_NUM_TRAJ, iter_steps=SIR_PCA_ITER_STEPS)
    #mod_pca_flow = mod_reach.computeReachSet(NUM_STEPS, tempstrat=pca_strat)

    vdp_plot = Plot()
    vdp_plot.add(mod_flow, "HarOsc")
    #vdp_plot.add(mod_pca_flow, "HarOsc PCA")
    vdp_plot.plot2DPhase(0, 1)

    Timer.generate_stats()
Esempio n. 29
0
def test_lin_VDP():

    NUM_STEPS = 70
    VDP_LIN_ITER_STEPS = 1  #Number of steps between each recomputation of LinApp Templates.
    VDP_LIN_DELAY = 1

    model = VanDerPol(delta=0.08)
    unit_model = VanDerPol_UnitBox(delta=0.08)

    lin_strat = MultiStrategy(LinStrat(unit_model, iter_steps=VDP_LIN_ITER_STEPS), \
                              LinStrat(unit_model, iter_steps=VDP_LIN_ITER_STEPS+VDP_LIN_DELAY), \
                              LinStrat(unit_model, iter_steps=VDP_LIN_ITER_STEPS+2*VDP_LIN_DELAY))

    inputs = [
        ExperimentInput(model, label="VDP Sapo"),
        ExperimentInput(unit_model, strat=lin_strat, label="VDP Kaa Lin")
    ]

    vdp_pca = PhasePlotExperiment(inputs)
    vdp_pca.execute(NUM_STEPS)
    vdp_pca.plot_results(0, 1)

    Timer.generate_stats()
Esempio n. 30
0
def test_lv_pca_strat():

    #Compute Sapo's version.
    lv_pca = LotkaVolterra_UnitBox()
    lv = LotkaVolterra()
    lv_reach = ReachSet(lv)

    lv_flow = lv_reach.computeReachSet(NUM_STEPS)
    lv_plot = Plot()
    lv_plot.add(lv_flow)

    for i in range(1, ITER_SPREAD):
        print(
            colored("Generating PCA with Iterative Step Size: {}".format(2 *
                                                                         i),
                    "white",
                    attrs=['reverse', 'blink']))
        lv_pca_reach = ReachSet(lv_pca)
        lv_flow_pca = lv_pca_reach.computeReachSet(
            NUM_STEPS, PCAStrat(lv_pca, iter_steps=2 * i))
        lv_plot.add(lv_flow_pca, "LV_PCA_{}".format(2 * i))

    lv_plot.plot(0, 1, 2)
    Timer.generate_stats()