Esempio n. 1
0
    # Our second model is a simple exponential function
    # The kwargs in the function header specify parameter defaults.
    return A0 * np.exp(x / x0)


# Read in the measurement data from a yaml file.
# For more information on reading/writing kafe2 objects from/to files see TODO
xy_data = XYContainer.from_file("data.yml")

# Create 2 XYFit objects with the same data but with different model functions
linear_fit = XYFit(xy_data=xy_data, model_function=linear_model)
exponential_fit = XYFit(xy_data=xy_data, model_function=exponential_model)

# Optional: Assign LaTeX strings to parameters and model functions.
linear_fit.assign_parameter_latex_names(a='a', b='b')
linear_fit.assign_model_function_latex_expression("{a}{x} + {b}")
exponential_fit.assign_parameter_latex_names(A0='A_0', x0='x_0')
exponential_fit.assign_model_function_latex_expression("{A0} e^{{{x}/{x0}}}")

# Perform the fits.
linear_fit.do_fit()
exponential_fit.do_fit()

# Optional: Print out a report on the result of each fit.
linear_fit.report()
exponential_fit.report()

# Optional: Create a plot of the fit results using Plot.
p = Plot(fit_objects=[linear_fit, exponential_fit], separate_figures=False)
p.plot(fit_info=True)
Esempio n. 2
0
# load all data into numpy arrays
U, I, T = np.loadtxt('OhmsLawExperiment.dat', unpack=True)  # data
sigU, sigI, sigT = 0.1, 0.1, 0.1  # uncertainties

T0 = 273.15  # 0 degrees C as absolute Temperature (in Kelvin)
T -= T0  # Measurements are in Kelvin, convert to °C

# -- Finally, go through the fitting procedure

# Step 1: perform an "auxiliary" fit to the T(U) data
auxiliary_fit = XYFit(xy_data=[U, T], model_function=empirical_T_U_model)

# (Optional): Assign names for models and parameters
auxiliary_fit.assign_parameter_latex_names(x='U', p2='p_2', p1='p_1', p0='p_0')
auxiliary_fit.assign_model_function_expression('{1}*{x}^2 + {2}*{x} + {3}')
auxiliary_fit.assign_model_function_latex_expression(
    r'{1}\,{x}^2 + {2}\,{x} + {3}')

# declare errors on U
auxiliary_fit.add_error(axis='x', err_val=sigU)

# declare errors on T
auxiliary_fit.add_error(axis='y', err_val=sigT)

# perform the auxiliary fit
auxiliary_fit.do_fit()

# (Optional) print the results
auxiliary_fit.report()

# (Optional) plot the results
auxiliary_plot = Plot(auxiliary_fit)