Esempio n. 1
0
 def _parsevals(value, arrayonly=False):
     if isinstance(value, NamedIndex):
         val = value._names
     elif iterable(value):
         val = np.asarray(ll(value), dtype=object)
         if checkany(val, lambda x: not isstring(x)):
             raise TypeError('index names must be string')
     else:
         if arrayonly: raise TypeError('index names must be an array')
         if not isstring(value):
             raise TypeError('index name must be a string')
         val = value
     return val
Esempio n. 2
0
 def idsof(self,
           names: Union[str, Iterable[str]],
           safe: bool = False) -> Union[None, int, List[Union[None, int]]]:
     if isstring(names):
         ids = self._nidct.get(names, None)
         if not safe and missing(ids):
             raise KeyError(f'unknown index name {names}')
     else:
         ids = [
             self._nidct.get(n, None) if isstring(n) else n for n in names
         ]
         if not safe and checkany(ids, missing):
             raise KeyError('unknown index name(s)')
     return ids
Esempio n. 3
0
    def delete(self,
               pos: Indices2D,
               axis: Optional[int] = 0,
               inline: bool = False) -> StructuredArray:
        narr = self if inline else self.copy()
        if isstring(pos):
            del narr._arrs[pos]
            return narr

        sids, aids = self._parseids(pos, axis=axis, mapslice=False)
        slic = isinstance(sids, slice) and sids == slice(None)
        alic = isinstance(aids,
                          slice) and aids == slice(None) and (missing(axis)
                                                              or axis == 0)

        if slic and alic:
            narr._arrs = OrderedDict()
            narr._length = None
        elif slic and not alic:
            if listable(aids) and len(aids) == 1 and aids[0] < 0:
                aids = aids[
                    0]  # fix the issue that currently negative indices are ignored by np.delete
            for k, v in narr._arrs.items():
                narr._arrs[k] = np.delete(v, aids)
            narr._length = len(narr._arrs[l(narr._arrs.keys())[0]])
        elif not slic and alic:
            if isinstance(sids, slice) or sids.dtype.kind not in ('S', 'U'):
                sids = narr.names[sids]
            for k in sids:
                del narr._arrs[k]
        else:
            raise IndexError('unable to delete portion of the array')

        return narr
Esempio n. 4
0
    def put(self,
            pos: Indices2D,
            value: Any,
            axis: Optional[int] = 0,
            inline: bool = False) -> StructuredArray:
        narr = self if inline else self.copy()
        vals = self._parsevals(value)

        if isstring(pos):
            if not isinstance(vals, np.ndarray):
                raise ValueError('input array not in 1-dimensional')
            if missing(narr._length): narr._length = vals.shape[0]
            elif narr._length != vals.shape[0]:
                raise ValueError('input array size not match')
            narr._arrs[pos] = vals.copy()
        else:
            sids, aids = self._parseids(pos, axis=axis)
            if not isinstance(vals, list):
                for k in sids:
                    narr._arrs[k][aids] = vals
            else:
                if len(sids) != len(vals):
                    raise ValueError('input names and values size not match')
                for k, vals in zip(sids, vals):
                    narr._arrs[k][aids] = vals
        return narr
Esempio n. 5
0
 def _parseids(self, ids):
     if isinstance(ids, tuple):
         raise IndexError('too many dimensions for array')
     if (listable(ids) and checkany(ids, isstring)) or isstring(ids):
         return self.idsof(ids, safe=False)
     if listable(ids) and checkany(ids, lambda v: isinstance(v, bool)):
         return np.where(ids)[0]
     if ids is None: return slice(None)
     return ids
Esempio n. 6
0
 def put(self,
         pos: Indices,
         value: Union[str, Iterable[str]],
         inline: bool = False) -> NamedIndex:
     pos = self._parseids(pos)
     val = self._parsevals(value)
     nid = self if inline else self.copy()
     if isinstance(pos, int):
         if not isstring(val):
             raise TypeError('cannot assign multiple names to one position')
         nid._nidct.pop(nid._names[pos])
         if val in nid._nidct: raise KeyError('index names not unique')
         nid._names[pos], nid._nidct[val] = val, pos
     else:
         nid._names[pos] = val
         nid._reindex()
     return nid
Esempio n. 7
0
    def _parseids(self, idx, axis=None, mapslice=True):
        if missing(axis):
            sids, aids = (idx, slice(None)) if not isinstance(idx, tuple) else \
                         (idx[0], slice(None)) if len(idx) == 1 else idx
        else:
            if isinstance(idx, tuple):
                raise IndexError('too many dimensions for array')
            if axis not in (0, 1): raise IndexError('invalid axis value')
            sids, aids = (idx, slice(None)) if axis == 0 else (slice(None),
                                                               idx)

        def _wrap(ids):
            if ids is None: return slice(None)
            if isinstance(ids, slice): return ids
            if not listable(ids): return [ids]
            return ids

        sids, aids = smap((sids, aids), _wrap)

        if (isinstance(sids, slice) and mapslice) or (
                listable(sids) and checkany(sids, lambda x: not isstring(x))):
            sids = self.names[sids]
        return sids, aids
Esempio n. 8
0
 def take(self, pos: Indices2D, axis: Optional[int] = 0) -> StructuredArray:
     if isstring(pos): return self._arrs[pos]
     sids, aids = self._parseids(pos, axis=axis)
     return StructuredArray([(k, self._arrs[k][aids]) for k in sids])