def __init__(self, nb_path: str, nb_metadata_overrides: Dict[str, Any] = None, skip_validation: bool = False): """Instantiate a new NotebookProcessor. Args: nb_path: Path to source notebook nb_metadata_overrides: Override notebook config settings skip_validation: Set to True in order to skip the notebook's metadata validation. This is useful in case the NotebookProcessor is used to parse a part of the notebook (e.g., retrieve pipeline metrics) and the notebook config (for pipeline generation) might still be invalid. """ self.nb_path = os.path.expanduser(nb_path) self.notebook = self._read_notebook() nb_metadata = self.notebook.metadata.get(KALE_NB_METADATA_KEY, dict()) # fixme: needed? nb_metadata.update({"notebook_path": nb_path}) if nb_metadata_overrides: nb_metadata.update(nb_metadata_overrides) # validate and populate defaults # FIXME: Maybe improve this by implementing a "skip_validation" flag # in the config class self.config = None if not skip_validation: self.config = NotebookConfig(**nb_metadata) self.pipeline = Pipeline(self.config)
def test_get_volumes_parameters_exc(dummy_nb_config, volumes): """Tests that volumes are correctly converted from list into dict.""" with pytest.raises(ValueError, match="VolumeTypeValidator:" " Value unknown is not allowed"): pipeline = Pipeline(NotebookConfig(**dummy_nb_config, volumes=volumes)) pipeline.set_volume_pipeline_parameters()
def __init__(self, config: PipelineConfig = None, skip_validation: bool = False, **kwargs): self.config = config if not config and not skip_validation: self.config = self.config_cls(**kwargs) self.pipeline = Pipeline(self.config)
def assign_metrics(pipeline: Pipeline, pipeline_metrics: dict): """Assign pipeline metrics to specific pipeline steps. This assignment follows a similar logic to the detection of `out` dependencies. Starting from a temporary step - child of all the leaf nodes, all the nodes in the pipelines are traversed in reversed topological order. When a step shows one of the metrics as part of its code, then that metric is assigned to the step. Args: pipeline: Pipeline object pipeline_metrics (dict): a dict of pipeline metrics where the key is the KFP sanitized name and the value the name of the original variable. """ # create a temporary step at the end of the pipeline to simplify the # iteration from the leaf steps tmp_step_name = "_tmp" leaf_steps = pipeline.get_leaf_steps() if not leaf_steps: return [pipeline.add_edge(step.name, tmp_step_name) for step in leaf_steps] # pipeline_metrics is a dict having sanitized variable names as keys and # the corresponding variable names as values. Here we need to refer to # the sanitized names using the python variables. # XXX: We could change parse_metrics_print_statements() to return the # XXX: reverse dictionary, but that would require changing either # XXX: rpc.nb.get_pipeline_metrics() or change in the JupyterLab Extension # XXX: parsing of the RPC result rev_pipeline_metrics = {v: k for k, v in pipeline_metrics.items()} metrics_left = set(rev_pipeline_metrics.keys()) for anc in graphutils.get_ordered_ancestors(pipeline, tmp_step_name): if not metrics_left: break anc_step = pipeline.get_step(anc) anc_source = '\n'.join(anc_step.source) # get all the marshal candidates from father's source and intersect # with the metrics that have not been matched yet marshal_candidates = kale_ast.get_marshal_candidates(anc_source) assigned_metrics = metrics_left.intersection(marshal_candidates) # Remove the metrics that have already been assigned. metrics_left.difference_update(assigned_metrics) # Generate code to produce the metrics artifact in the current step if assigned_metrics: code = METRICS_TEMPLATE % (" " + ",\n ".join([ '"%s": %s' % (rev_pipeline_metrics[x], x) for x in sorted(assigned_metrics) ])) anc_step.source.append(code) # need to have a `metrics` flag set to true in order to set the # metrics output artifact in the pipeline template anc_step.metrics = True pipeline.remove_node(tmp_step_name)
def test_generate_function(_nb_config_mock, notebook_processor, step_name, source, ins, outs, metadata, target): """Test that python code is generated correctly.""" pipeline = Pipeline(NotebookConfig(**{**DUMMY_NB_CONFIG, **metadata})) pipeline.processor = notebook_processor step = Step(name=step_name, source=source, ins=ins, outs=outs) compiler = Compiler(pipeline) res = compiler.generate_lightweight_component(step) target = open(os.path.join(THIS_DIR, "../assets/functions", target)).read() assert res.strip() == target.strip()
def test_set_volume_pipeline_parameters(notebook_processor, dummy_nb_config, volumes, target): """Tests that volumes are correctly converted from list into dict.""" notebook_processor.pipeline = Pipeline( NotebookConfig(**dummy_nb_config, volumes=volumes)) notebook_processor._set_volume_pipeline_parameters() assert target == notebook_processor.pipeline.pipeline_parameters
def test_merge_code(dummy_nb_config): """Test the merge code functionality.""" pipeline = Pipeline(NotebookConfig(**dummy_nb_config)) pipeline.add_step(Step(name="test", source=["test1"])) pipeline.get_step("test").merge_code("test2") assert pipeline.get_step("test").source == ["test1", "test2"]
def test_dependencies_detection_free_variable(notebook_processor, dummy_nb_config): """Test dependencies detection with free variables.""" pipeline = Pipeline(dummy_nb_config) _source = [''' x = 5 '''] pipeline.add_step(Step(name="step1", source=_source)) _source = [''' def foo(): print(x) '''] pipeline.add_step(Step(name="step2", source=_source)) _source = [''' foo() '''] pipeline.add_step(Step(name="step3", source=_source)) pipeline.add_edge("step1", "step2") pipeline.add_edge("step2", "step3") notebook_processor.pipeline = pipeline notebook_processor.dependencies_detection() assert sorted(pipeline.get_step("step1").ins) == [] assert sorted(pipeline.get_step("step1").outs) == ["x"] assert sorted(pipeline.get_step("step2").ins) == ["x"] assert sorted(pipeline.get_step("step2").outs) == ["foo", "x"] assert sorted(pipeline.get_step("step3").ins) == ["foo", "x"] assert sorted(pipeline.get_step("step3").outs) == []
def test_deps_detection_recursive_different_steps_branch(notebook_processor, dummy_nb_config): """Test dependencies when fns are passed from multiple branches.""" pipeline = Pipeline(dummy_nb_config) _source = [''' x = 5 y = 6 '''] pipeline.add_step(Step(name="step0", source=_source)) _source = [''' def foo(): print(x) '''] pipeline.add_step(Step(name="step_l", source=_source)) _source = [''' def bar(): print(y) '''] pipeline.add_step(Step(name="step_r", source=_source)) _source = [''' def result(): foo() bar() '''] pipeline.add_step(Step(name="step_m", source=_source)) _source = ["result()"] pipeline.add_step(Step(name="step_f", source=_source)) pipeline.add_edge("step0", "step_l") pipeline.add_edge("step0", "step_r") pipeline.add_edge("step_l", "step_m") pipeline.add_edge("step_r", "step_m") pipeline.add_edge("step_m", "step_f") notebook_processor.pipeline = pipeline notebook_processor.dependencies_detection() assert sorted(pipeline.get_step("step0").ins) == [] assert sorted(pipeline.get_step("step0").outs) == ['x', 'y'] assert sorted(pipeline.get_step("step_l").ins) == ['x'] assert sorted(pipeline.get_step("step_l").outs) == ['foo', 'x'] assert sorted(pipeline.get_step("step_r").ins) == ['y'] assert sorted(pipeline.get_step("step_r").outs) == ['bar', 'y'] assert sorted(pipeline.get_step("step_m").ins) == ['bar', 'foo', 'x', 'y'] assert (sorted(pipeline.get_step("step_m").outs) == ['bar', 'foo', 'result', 'x', 'y']) assert (sorted(pipeline.get_step("step_f").ins) == ['bar', 'foo', 'result', 'x', 'y']) assert sorted(pipeline.get_step("step_f").outs) == []
def test_deps_detection_recursive_different_steps_long(notebook_processor, dummy_nb_config): """Test dependencies are detected even with a long chain of fns calls.""" pipeline = Pipeline(dummy_nb_config) _source = [''' x = 5 def init(): print(x) '''] pipeline.add_step(Step(name="step0", source=_source)) _source = [''' def foo(): init() '''] pipeline.add_step(Step(name="step1", source=_source)) _source = [''' def bar(): foo() '''] pipeline.add_step(Step(name="step2", source=_source)) _source = ["bar()"] pipeline.add_step(Step(name="step3", source=_source)) pipeline.add_edge("step0", "step1") pipeline.add_edge("step1", "step2") pipeline.add_edge("step2", "step3") notebook_processor.pipeline = pipeline notebook_processor.dependencies_detection() assert sorted(pipeline.get_step("step0").ins) == [] assert sorted(pipeline.get_step("step0").outs) == ['init', 'x'] assert sorted(pipeline.get_step("step1").ins) == ['init', 'x'] assert sorted(pipeline.get_step("step1").outs) == ['foo', 'init', 'x'] assert sorted(pipeline.get_step("step2").ins) == ['foo', 'init', 'x'] assert (sorted(pipeline.get_step("step2").outs) == ['bar', 'foo', 'init', 'x']) assert (sorted(pipeline.get_step("step3").ins) == ['bar', 'foo', 'init', 'x']) assert sorted(pipeline.get_step("step3").outs) == []
def test_dependencies_detection_with_try_except(notebook_processor, dummy_nb_config): """Test dependencies are detected with functions inside try.""" pipeline = Pipeline(dummy_nb_config) _source = [''' x = 5 y = 6 '''] pipeline.add_step(Step(name="step1", source=_source)) _source = [''' try: def foo(): print(x) def bar(): print(y) except: pass '''] pipeline.add_step(Step(name="step2", source=_source)) _source = [''' foo() bar() '''] pipeline.add_step(Step(name="step3", source=_source)) pipeline.add_edge("step1", "step2") pipeline.add_edge("step2", "step3") notebook_processor.pipeline = pipeline notebook_processor.dependencies_detection() assert sorted(pipeline.get_step("step1").ins) == [] assert sorted(pipeline.get_step("step1").outs) == ['x', 'y'] assert sorted(pipeline.get_step("step2").ins) == ['x', 'y'] assert sorted(pipeline.get_step("step2").outs) == ['bar', 'foo', 'x', 'y'] assert sorted(pipeline.get_step("step3").ins) == ['bar', 'foo', 'x', 'y'] assert sorted(pipeline.get_step("step3").outs) == []
def test_dependencies_detection_with_pipeline_parameters(notebook_processor, dummy_nb_config): """Test dependencies are detected with pipeline parameters and globals.""" imports_and_functions = "import math" pipeline = Pipeline(dummy_nb_config) pipeline.pipeline_parameters = {"y": (5, 'int')} _source = ["x = 5"] pipeline.add_step(Step(name="step1", source=_prepend_to_source(_source, imports_and_functions))) _source = [''' def foo(x): def bar(): math.sqrt(x + y) bar() '''] pipeline.add_step(Step(name="step2", source=_prepend_to_source(_source, imports_and_functions))) _source = ["foo(5)"] pipeline.add_step(Step(name="step3", source=_prepend_to_source(_source, imports_and_functions))) pipeline.add_edge("step1", "step2") pipeline.add_edge("step2", "step3") notebook_processor.pipeline = pipeline notebook_processor.dependencies_detection(imports_and_functions) assert sorted(pipeline.get_step("step1").ins) == [] assert sorted(pipeline.get_step("step1").outs) == [] assert sorted(pipeline.get_step("step2").ins) == [] assert sorted(pipeline.get_step("step2").outs) == ['foo'] assert pipeline.get_step("step2").parameters == {"y": (5, 'int')} assert sorted(pipeline.get_step("step3").ins) == ['foo'] assert sorted(pipeline.get_step("step3").outs) == [] assert pipeline.get_step("step3").parameters == {"y": (5, 'int')}
def test_dependencies_detection_with_globals(notebook_processor, dummy_nb_config): """Test dependencies detection with inner function and globals.""" imports_and_functions = "import math" pipeline = Pipeline(dummy_nb_config) _source = ["x = 5"] pipeline.add_step(Step(name="step1", source=_prepend_to_source(_source, imports_and_functions))) _source = [''' def foo(x): def bar(): math.sqrt(x) bar() '''] pipeline.add_step(Step(name="step2", source=_prepend_to_source(_source, imports_and_functions))) _source = ["foo(5)"] pipeline.add_step(Step(name="step3", source=_prepend_to_source(_source, imports_and_functions))) pipeline.add_edge("step1", "step2") pipeline.add_edge("step2", "step3") notebook_processor.pipeline = pipeline notebook_processor.dependencies_detection(imports_and_functions) assert sorted(pipeline.get_step("step1").ins) == [] assert sorted(pipeline.get_step("step1").outs) == [] assert sorted(pipeline.get_step("step2").ins) == [] assert sorted(pipeline.get_step("step2").outs) == ['foo'] assert sorted(pipeline.get_step("step3").ins) == ['foo'] assert sorted(pipeline.get_step("step3").outs) == []
def test_dependencies_detection_with_parameter(notebook_processor, dummy_nb_config): """Test dependencies detection with function with parameter.""" pipeline = Pipeline(dummy_nb_config) _source = ["x = 5"] pipeline.add_step(Step(name="step1", source=_source)) _source = [''' def foo(x): def bar(): print(x) '''] pipeline.add_step(Step(name="step2", source=_source)) _source = ["foo(5)"] pipeline.add_step(Step(name="step3", source=_source)) pipeline.add_edge("step1", "step2") pipeline.add_edge("step2", "step3") notebook_processor.pipeline = pipeline notebook_processor.dependencies_detection() assert sorted(pipeline.get_step("step1").ins) == [] assert sorted(pipeline.get_step("step1").outs) == [] assert sorted(pipeline.get_step("step2").ins) == [] assert sorted(pipeline.get_step("step2").outs) == ['foo'] assert sorted(pipeline.get_step("step3").ins) == ['foo'] assert sorted(pipeline.get_step("step3").outs) == []
class NotebookProcessor: """Convert a Notebook to a Pipeline object.""" def __init__(self, nb_path: str, nb_metadata_overrides: Dict[str, Any] = None, skip_validation: bool = False): """Instantiate a new NotebookProcessor. Args: nb_path: Path to source notebook nb_metadata_overrides: Override notebook config settings skip_validation: Set to True in order to skip the notebook's metadata validation. This is useful in case the NotebookProcessor is used to parse a part of the notebook (e.g., retrieve pipeline metrics) and the notebook config (for pipeline generation) might still be invalid. """ self.nb_path = os.path.expanduser(nb_path) self.notebook = self._read_notebook() nb_metadata = self.notebook.metadata.get(KALE_NB_METADATA_KEY, dict()) # fixme: needed? nb_metadata.update({"notebook_path": nb_path}) if nb_metadata_overrides: nb_metadata.update(nb_metadata_overrides) # validate and populate defaults # FIXME: Maybe improve this by implementing a "skip_validation" flag # in the config class self.config = None if not skip_validation: self.config = NotebookConfig(**nb_metadata) self.pipeline = Pipeline(self.config) def _read_notebook(self): if not os.path.exists(self.nb_path): raise ValueError("NotebookProcessor could not find a notebook at" " path %s" % self.nb_path) return nb.read(self.nb_path, as_version=nb.NO_CONVERT) def to_pipeline(self): """Convert an annotated Notebook to a Pipeline object.""" (pipeline_parameters_source, pipeline_metrics_source, imports_and_functions) = self.parse_notebook() self.parse_pipeline_parameters(pipeline_parameters_source) self.pipeline.set_volume_pipeline_parameters() # get a list of variables that need to be logged as pipeline metrics pipeline_metrics = astutils.parse_metrics_print_statements( pipeline_metrics_source) # run static analysis over the source code self.dependencies_detection(imports_and_functions) self.assign_metrics(pipeline_metrics) # if there are multiple DAG leaves, add an empty step at the end of the # pipeline for final snapshot leaf_steps = self.pipeline.get_leaf_steps() if self.config.autosnapshot and len(leaf_steps) > 1: _name = "final_auto_snapshot" self.pipeline.add_step(Step(name=_name, source=[])) # add a link from all the last steps of the pipeline to # the final auto snapshot one. for step in leaf_steps: self.pipeline.add_edge(step.name, _name) # FIXME: Move this to a base class Processor, to be executed by default # after `to_pipeline`, so that it is agnostic to the type of # processor. for step in self.pipeline.steps: step.config.update(self.pipeline.config.steps_defaults) # TODO: Additional action required: # Run a static analysis over every step to check that pipeline # parameters are not assigned with new values. return self.pipeline def parse_pipeline_parameters(self, source: str): """Get pipeline parameters from source code.""" pipeline_parameters = astutils.parse_assignments_expressions(source) for name, (v_type, v_value) in pipeline_parameters.items(): pipeline_parameters[name] = PipelineParam(v_type, v_value) self.pipeline.pipeline_parameters = pipeline_parameters def parse_notebook(self): """Creates a NetworkX graph based on the input notebook's tags. Cell's source code are embedded into the graph as node attributes. """ # will be assigned at the end of each for loop prev_step_name = None # All the code cells that have to be pre-pended to every pipeline step # (i.e., imports and functions) are merged here imports_block = list() functions_block = list() # Variables that will become pipeline parameters pipeline_parameters = list() # Variables that will become pipeline metrics pipeline_metrics = list() for c in self.notebook.cells: if c.cell_type != "code": continue tags = self.parse_cell_metadata(c.metadata) if len(tags['step_names']) > 1: raise NotImplementedError("Kale does not yet support multiple" " step names in a single notebook" " cell. One notebook cell was found" " with %s step names" % tags['step_names']) step_name = (tags['step_names'][0] if 0 < len(tags['step_names']) else None) if step_name == 'skip': # when the cell is skipped, don't store `skip` as the previous # active cell continue if step_name == 'pipeline-parameters': pipeline_parameters.append(c.source) prev_step_name = step_name continue if step_name == 'imports': imports_block.append(c.source) prev_step_name = step_name continue if step_name == 'functions': functions_block.append(c.source) prev_step_name = step_name continue if step_name == 'pipeline-metrics': pipeline_metrics.append(c.source) prev_step_name = step_name continue # if none of the above apply, then we are parsing a code cell with # a block names and (possibly) some dependencies # if the cell was not tagged with a step name, # add the code to the previous cell if not step_name: if prev_step_name == 'imports': imports_block.append(c.source) elif prev_step_name == 'functions': functions_block.append(c.source) elif prev_step_name == 'pipeline-parameters': pipeline_parameters.append(c.source) elif prev_step_name == 'pipeline-metrics': pipeline_metrics.append(c.source) # current_block might be None in case the first cells of the # notebooks have not been tagged. elif prev_step_name: # this notebook cell will be merged to a previous one that # specified a step name self.pipeline.get_step(prev_step_name).merge_code(c.source) else: # in this branch we are sure that we are reading a code cell # with a step tag, so we must not allow for pipeline-metrics if prev_step_name == 'pipeline-metrics': raise ValueError("Tag pipeline-metrics must be placed on a" " cell at the end of the Notebook." " Pipeline metrics should be considered" " as a result of the pipeline execution" " and not of single steps.") # add node to DAG, adding tags and source code of notebook cell if step_name not in self.pipeline.nodes: step = Step(name=step_name, source=[c.source], ins=set(), outs=set(), limits=tags.get("limits", {}), labels=tags.get("labels", {}), annotations=tags.get("annotations", {})) self.pipeline.add_step(step) for _prev_step in tags['prev_steps']: if _prev_step not in self.pipeline.nodes: raise ValueError("Step %s does not exist. It was " "defined as previous step of %s" % (_prev_step, tags['step_names'])) self.pipeline.add_edge(_prev_step, step_name) else: self.pipeline.get_step(step_name).merge_code(c.source) prev_step_name = step_name # Prepend any `imports` and `functions` cells to every Pipeline step for step in self.pipeline.steps: step.source = imports_block + functions_block + step.source # merge together pipeline parameters pipeline_parameters = '\n'.join(pipeline_parameters) # merge together pipeline metrics pipeline_metrics = '\n'.join(pipeline_metrics) imports_and_functions = "\n".join(imports_block + functions_block) return pipeline_parameters, pipeline_metrics, imports_and_functions def parse_cell_metadata(self, metadata): """Parse a notebook's cell's metadata field. The Kale UI writes specific tags inside the 'tags' field, as a list of string tags. Supported tags are defined by _TAGS_LANGUAGE. Args: metadata (dict): a dict containing a notebook's cell's metadata Returns (dict): parsed tags based on Kale tagging language """ parsed_tags = dict() # `step_names` is a list because a notebook cell might be assigned to # more than one Pipeline step. parsed_tags['step_names'] = list() parsed_tags['prev_steps'] = list() # define intermediate variables so that dicts are not added to a steps # when they are empty cell_annotations = dict() cell_labels = dict() cell_limits = dict() # the notebook cell was not tagged if 'tags' not in metadata or len(metadata['tags']) == 0: return parsed_tags for t in metadata['tags']: if not isinstance(t, str): raise ValueError( "Tags must be string. Found tag %s of type %s" % (t, type(t))) # Check that the tag is defined by the Kale tagging language if any(re.match(_t, t) for _t in _TAGS_LANGUAGE) is False: raise ValueError("Unrecognized tag: {}".format(t)) # Special tags have a specific effect on the cell they belong to. # Specifically: # - skip: ignore the notebook cell # - pipeline-parameters: use the cell to populate Pipeline # parameters. The cell must contain only assignment # expressions # - pipeline-metrics: use the cell to populate Pipeline metrics. # The cell must contain only variable names # - imports: the code of the corresponding cell(s) will be # prepended to every Pipeline step # - functions: same as imports, but the corresponding code is # placed **after** `imports` special_tags = [ 'skip', 'pipeline-parameters', 'pipeline-metrics', 'imports', 'functions' ] if t in special_tags: parsed_tags['step_names'] = [t] return parsed_tags # now only `block|step` and `prev` tags remain to be parsed. tag_parts = t.split(':') tag_name = tag_parts.pop(0) if tag_name == "annotation": key, value = get_annotation_or_label_from_tag(tag_parts) cell_annotations.update({key: value}) if tag_name == "label": key, value = get_annotation_or_label_from_tag(tag_parts) cell_labels.update({key: value}) if tag_name == "limit": key, value = get_limit_from_tag(tag_parts) cell_limits.update({key: value}) # name of the future Pipeline step # TODO: Deprecate `block` in future release if tag_name in ["block", "step"]: if tag_name == "block": warnings.warn( "`block` tag will be deprecated in a future" " version, use `step` tag instead", DeprecationWarning) step_name = tag_parts.pop(0) parsed_tags['step_names'].append(step_name) # name(s) of the father Pipeline step(s) if tag_name == "prev": prev_step_name = tag_parts.pop(0) parsed_tags['prev_steps'].append(prev_step_name) if not parsed_tags['step_names'] and parsed_tags['prev_steps']: raise ValueError( "A cell can not provide `prev` annotations without " "providing a `block` or `step` annotation as well") if cell_annotations: if not parsed_tags['step_names']: raise ValueError( "A cell can not provide Pod annotations in a cell" " that does not declare a step name.") parsed_tags['annotations'] = cell_annotations if cell_limits: if not parsed_tags['step_names']: raise ValueError( "A cell can not provide Pod resource limits in a" " cell that does not declare a step name.") parsed_tags['limits'] = cell_limits return parsed_tags def get_pipeline_parameters_source(self): """Get just pipeline parameters cells from the notebook. Returns (str): pipeline parameters source code """ return self._get_reserved_tag_source(PIPELINE_PARAMETERS_TAG) def get_pipeline_metrics_source(self): """Get just pipeline metrics cells from the notebook. Returns (str): pipeline metrics source code """ # check that the pipeline metrics tag is only assigned to cells at # the end of the notebook detected = False tags = _TAGS_LANGUAGE[:] tags.remove(PIPELINE_METRICS_TAG) for c in self.notebook.cells: # parse only source code cells if c.cell_type != "code": continue # if we see a pipeline-metrics tag, set the flag if (('tags' in c.metadata and len(c.metadata['tags']) > 0 and any( re.match(PIPELINE_METRICS_TAG, t) for t in c.metadata['tags']))): detected = True continue # if we have the flag set and we detect any other tag from the tags # language, then raise error if (detected and 'tags' in c.metadata and len(c.metadata['tags']) > 0 and any([ any(re.match(tag, t) for t in c.metadata['tags']) for tag in tags ])): raise ValueError( "Tag pipeline-metrics tag must be placed on a " "cell at the end of the Notebook." " Pipeline metrics should be considered as a" " result of the pipeline execution and not of" " single steps.") return self._get_reserved_tag_source(PIPELINE_METRICS_TAG) def _get_reserved_tag_source(self, search_tag): """Get just the specific tag's source code. When searching for tag x, will return all cells that are tagged with x and, if untagged, follow cells with tag x. The result is a multiline string containing all the python code associated to x. Note: This is designed for 'special' tags, as the STEP_TAG is excluded from the match. Args: search_tag (str): the target tag Returns: the unified code of all the cells belonging to `search_tag` """ detected = False source = '' language = _TAGS_LANGUAGE[:] language.remove(search_tag) for c in self.notebook.cells: # parse only source code cells if c.cell_type != "code": continue # in case the previous cell was a `search_tag` cell and this # cell is not any other tag of the tag language: if (detected and (('tags' not in c.metadata or len(c.metadata['tags']) == 0) or all([ not any(re.match(tag, t) for t in c.metadata['tags']) for tag in language ]))): source += '\n' + c.source elif ( ('tags' in c.metadata and len(c.metadata['tags']) > 0 and any(re.match(search_tag, t) for t in c.metadata['tags']))): source += '\n' + c.source detected = True else: detected = False return source.strip() def assign_metrics(self, pipeline_metrics: dict): """Assign pipeline metrics to specific pipeline steps. This assignment follows a similar logic to the detection of `out` dependencies. Starting from a temporary step - child of all the leaf nodes, all the nodes in the pipelines are traversed in reversed topological order. When a step shows one of the metrics as part of its code, then that metric is assigned to the step. Args: pipeline_metrics (dict): a dict of pipeline metrics where the key always the KFP sanitized name and the value the name of the original variable. """ # create a temporary step at the end of the pipeline to simplify the # iteration from the leaf steps tmp_step_name = "_tmp" leaf_steps = self.pipeline.get_leaf_steps() if not leaf_steps: return [ self.pipeline.add_edge(step.name, tmp_step_name) for step in leaf_steps ] # pipeline_metrics is a dict having sanitized variable names as keys # and the corresponding variable names as values. Here we need to refer # to the sanitized names using the python variables. # XXX: We could change parse_metrics_print_statements() to return the # XXX: reverse dictionary, but that would require changing either # XXX: rpc.nb.get_pipeline_metrics() or change in the JupyterLab # XXX: Extension parsing of the RPC result rev_pipeline_metrics = {v: k for k, v in pipeline_metrics.items()} metrics_left = set(rev_pipeline_metrics.keys()) for anc in graphutils.get_ordered_ancestors(self.pipeline, tmp_step_name): if not metrics_left: break anc_step = self.pipeline.get_step(anc) anc_source = '\n'.join(anc_step.source) # get all the marshal candidates from father's source and intersect # with the metrics that have not been matched yet marshal_candidates = astutils.get_marshal_candidates(anc_source) assigned_metrics = metrics_left.intersection(marshal_candidates) # Remove the metrics that have already been assigned. metrics_left.difference_update(assigned_metrics) # Generate code to produce the metrics artifact in the current step if assigned_metrics: code = METRICS_TEMPLATE % (" " + ",\n ".join([ '"%s": %s' % (rev_pipeline_metrics[x], x) for x in sorted(assigned_metrics) ])) anc_step.source.append(code) # need to have a `metrics` flag set to true in order to set the # metrics output artifact in the pipeline template anc_step.metrics = True self.pipeline.remove_node(tmp_step_name) def dependencies_detection(self, imports_and_functions: str = ""): """Detect the data dependencies between nodes in the graph. The data dependencies detection algorithm roughly works as follows: 1. Traversing the graph in topological order, for every node `step` do 2. Detect the `ins` of current `step` by running PyFlakes on the source code. During this action the pipeline parameters are taken into consideration 3. Parse `step`'s global function definitions to get free variables (i.e. variables that would need to be marshalled in other steps that call these functions) - in this action pipeline parameters are taken into consideration. 4. Get all the function that `step` calls 5. For every `step`'s ancestor `anc` do - Get all the potential names (objects, functions, ...) of `anc` that could be marshalled (saved) - Intersect this with the `step`'s `ins` (from action 2) and add the result to `anc`'s `outs`. - for every `step`'s function call (action 4), check if this function was defined in `anc` and if it has free variables (action 3). If so, add to `step`'s `ins` and to `anc`'s `outs` these free variables. Args: imports_and_functions: Multiline Python source that is prepended to every pipeline step Returns: annotated graph """ # resolve the data dependencies between steps, looping through the # graph for step in self.pipeline.steps: # detect the INS dependencies of the CURRENT node------------------ step_source = '\n'.join(step.source) # get the variables that this step is missing and the pipeline # parameters that it actually needs. ins, parameters = self._detect_in_dependencies( source_code=step_source, pipeline_parameters=self.pipeline.pipeline_parameters) fns_free_variables = self._detect_fns_free_variables( step_source, imports_and_functions, self.pipeline.pipeline_parameters) # Get all the function calls. This will be used below to check if # any of the ancestors declare any of these functions. Is that is # so, the free variables of those functions will have to be loaded. fn_calls = astutils.get_function_calls(step_source) # add OUT dependencies annotations in the PARENT nodes------------- # Intersect the missing names of this father's child with all # the father's names. The intersection is the list of variables # that the father need to serialize # The ancestors are the the nodes that have a path to `step`, # ordered by path length. ins_left = ins.copy() for anc in (graphutils.get_ordered_ancestors( self.pipeline, step.name)): if not ins_left: # if there are no more variables that need to be # marshalled, stop the graph traverse break anc_step = self.pipeline.get_step(anc) anc_source = '\n'.join(anc_step.source) # get all the marshal candidates from father's source and # intersect with the required names of the current node marshal_candidates = astutils.get_marshal_candidates( anc_source) outs = ins_left.intersection(marshal_candidates) # Remove the ins that have already been assigned to an ancestor ins_left.difference_update(outs) # Include free variables to_remove = set() for fn_call in fn_calls: anc_fns_free_vars = anc_step.fns_free_variables if fn_call in anc_fns_free_vars.keys(): # the current step needs to load these variables fn_free_vars, used_params = anc_fns_free_vars[fn_call] # search if this function calls other functions (i.e. # if its free variables are found in the free variables # dict) _left = list(fn_free_vars) while _left: _cur = _left.pop(0) # if the free var is itself a fn with free vars if _cur in anc_fns_free_vars: fn_free_vars.update(anc_fns_free_vars[_cur][0]) _left = _left + list( anc_fns_free_vars[_cur][0]) ins.update(fn_free_vars) # the current ancestor needs to save these variables outs.update(fn_free_vars) # add the parameters used by the function to the list # of pipeline parameters used by the step _pps = self.pipeline.pipeline_parameters for param in used_params: parameters[param] = _pps[param] # Remove this function as it has been served. We don't # want other ancestors to save free variables for this # function. Using the helper to_remove because the set # can not be resized during iteration. to_remove.add(fn_call) # add the function and its free variables to the # current step as well. This is useful in case # *another* function will call this one (`fn_call`) in # a child step. In this way we can track the calls up # to the last free variable. (refer to test # `test_dependencies_detection_recursive`) fns_free_variables[fn_call] = anc_fns_free_vars[ fn_call] fn_calls.difference_update(to_remove) # Add to ancestor the new outs annotations. First merge the # current outs present in the anc with the new ones anc_step.outs.update(outs) step.ins = sorted(ins) step.parameters = parameters step.fns_free_variables = fns_free_variables def _detect_in_dependencies(self, source_code: str, pipeline_parameters: dict = None): """Detect missing names from one pipeline step source code. Args: source_code: Multiline Python source code pipeline_parameters: Pipeline parameters dict """ commented_source_code = utils.comment_magic_commands(source_code) ins = flakeutils.pyflakes_report(code=commented_source_code) # Pipeline parameters will be part of the names that are missing, # but of course we don't want to marshal them in as they will be # present as parameters relevant_parameters = set() if pipeline_parameters: # Not all pipeline parameters are needed in every pipeline step, # these are the parameters that are actually needed by this step. relevant_parameters = ins.intersection(pipeline_parameters.keys()) ins.difference_update(relevant_parameters) step_params = {k: pipeline_parameters[k] for k in relevant_parameters} return ins, step_params def _detect_fns_free_variables(self, source_code: str, imports_and_functions: str = "", step_parameters: dict = None): """Return the function's free variables. Free variable: _If a variable is used in a code block but not defined there, it is a free variable._ An Example: ``` x = 5 def foo(): print(x) ``` In the example above, `x` is a free variable for function `foo`, because it is defined outside of the context of `foo`. Here we run the PyFlakes report over the function body to get all the missing names (i.e. free variables), excluding the function arguments. Args: source_code: Multiline Python source code imports_and_functions: Multiline Python source that is prepended to every pipeline step. It should contain the code cells that where tagged as `import` and `functions`. We prepend this code to the function body because it will always be present in any pipeline step. step_parameters: Step parameters names. The step parameters are removed from the pyflakes report, as these names will always be available in the step's context. Returns (dict): A dictionary with the name of the function as key and a list of variables names + consumed pipeline parameters as values. """ fns_free_vars = dict() # now check the functions' bodies for free variables. fns is a # dict function_name -> function_source fns = astutils.parse_functions(source_code) for fn_name, fn in fns.items(): code = imports_and_functions + "\n" + fn free_vars = flakeutils.pyflakes_report(code=code) # the pipeline parameters that are used in the function consumed_params = {} if step_parameters: consumed_params = free_vars.intersection( step_parameters.keys()) # remove the used parameters form the free variables, as they # need to be handled differently. free_vars.difference_update(consumed_params) fns_free_vars[fn_name] = (free_vars, consumed_params) return fns_free_vars
class BaseProcessor(ABC): """Provides basic tools for processors to generate a Pipeline object.""" id: str no_op_step: Step config_cls = PipelineConfig def __init__(self, config: PipelineConfig = None, skip_validation: bool = False, **kwargs): self.config = config if not config and not skip_validation: self.config = self.config_cls(**kwargs) self.pipeline = Pipeline(self.config) def run(self) -> Pipeline: """Process the source into a Pipeline object.""" self.to_pipeline() self._post_pipeline() return self.pipeline @abstractmethod def to_pipeline(self): """A processor class is supposed to extend this method.""" pass def _post_pipeline(self): # keep reference to original processor, so the pipeline knows # what backend generated it. self.pipeline.processor = self self._add_final_autosnapshot_step() self._configure_poddefaults() self._apply_steps_defaults() self._set_volume_pipeline_parameters() def _add_final_autosnapshot_step(self): if not self.no_op_step: raise RuntimeError("Processor class needs to define a no-op step.") leaf_steps = self.pipeline.get_leaf_steps() if self.config.autosnapshot and len(leaf_steps) > 1: _step = copy.deepcopy(self.no_op_step) _step.config.name = "final_auto_snapshot" self.pipeline.add_step(_step) # add a link from all the last steps of the pipeline to # the final auto snapshot one. for step in leaf_steps: self.pipeline.add_edge(step.name, _step.config.name) def _configure_poddefaults(self): # FIXME: We should reconsider the implementation of # https://github.com/kubeflow-kale/kale/pull/175/files to # avoid using an RPC and always detect PodDefaults here. _pod_defaults_labels = dict() try: _pod_defaults_labels = kfutils.find_poddefault_labels() except Exception as e: log.warning("Could not retrieve PodDefaults. Reason: %s", e) self.pipeline.config.steps_defaults["labels"] = { **self.pipeline.config.steps_defaults.get("labels", dict()), **_pod_defaults_labels } def _apply_steps_defaults(self): for step in self.pipeline.steps: step.config.update(self.pipeline.config.steps_defaults) def _set_volume_pipeline_parameters(self): """Create pipeline parameters for volumes to be mounted on steps.""" volume_parameters = dict() for v in self.pipeline.config.volumes: # type: VolumeConfig if v.type == 'pv': # FIXME: How should we handle existing PVs? continue if v.type == 'pvc': mount_point = v.mount_point.replace('/', '_').strip('_') par_name = "vol_{}".format(mount_point) volume_parameters[par_name] = PipelineParam("str", v.name) elif v.type == 'new_pvc': rok_url = v.annotations.get("rok/origin") if rok_url is not None: par_name = "rok_{}_url".format(v.name.replace('-', '_')) volume_parameters[par_name] = PipelineParam("str", rok_url) else: raise ValueError("Unknown volume type: {}".format(v.type)) self.pipeline.pipeline_parameters.update(volume_parameters)
def test_dependencies_detection_inner_function(dummy_nb_config): """Test dependencies detection with inner functions.""" pipeline = Pipeline(dummy_nb_config) _source = ["x = 5"] pipeline.add_step(Step(name="step1", source=_source)) _source = [''' def foo(): def bar(x): print(x) bar(5) '''] pipeline.add_step(Step(name="step2", source=_source)) _source = [''' foo() print(x) '''] pipeline.add_step(Step(name="step3", source=_source)) pipeline.add_edge("step1", "step2") pipeline.add_edge("step2", "step3") dependencies.dependencies_detection(pipeline) assert sorted(pipeline.get_step("step1").ins) == [] assert sorted(pipeline.get_step("step1").outs) == ['x'] assert sorted(pipeline.get_step("step2").ins) == [] assert sorted(pipeline.get_step("step2").outs) == ['foo'] assert sorted(pipeline.get_step("step3").ins) == ['foo', 'x'] assert sorted(pipeline.get_step("step3").outs) == []
def test_dependencies_detection_recursive_different_steps(dummy_nb_config): """Test dependencies are detected even with a chain of functions calls.""" pipeline = Pipeline(dummy_nb_config) _source = [''' x = 5 def foo(): print(x) '''] pipeline.add_step(Step(name="step1", source=_source)) _source = [''' def bar(): foo() '''] pipeline.add_step(Step(name="step2", source=_source)) _source = ["bar()"] pipeline.add_step(Step(name="step3", source=_source)) pipeline.add_edge("step1", "step2") pipeline.add_edge("step2", "step3") dependencies.dependencies_detection(pipeline) assert sorted(pipeline.get_step("step1").ins) == [] assert sorted(pipeline.get_step("step1").outs) == ['foo', 'x'] assert sorted(pipeline.get_step("step2").ins) == ['foo', 'x'] assert sorted(pipeline.get_step("step2").outs) == ['bar', 'foo', 'x'] assert sorted(pipeline.get_step("step3").ins) == ['bar', 'foo', 'x'] assert sorted(pipeline.get_step("step3").outs) == []
class NotebookProcessor: """Convert a Notebook to a Pipeline object.""" def __init__(self, nb_path: str, nb_metadata_overrides: Dict[str, Any] = None, skip_validation: bool = False): """Instantiate a new NotebookProcessor. Args: nb_path: Path to source notebook nb_metadata_overrides: Override notebook config settings skip_validation: Set to True in order to skip the notebook's metadata validation. This is useful in case the NotebookProcessor is used to parse a part of the notebook (e.g., retrieve pipeline metrics) and the notebook config (for pipeline generation) might still be invalid. """ self.nb_path = os.path.expanduser(nb_path) self.notebook = self._read_notebook() nb_metadata = self.notebook.metadata.get(KALE_NB_METADATA_KEY, dict()) # fixme: needed? nb_metadata.update({"notebook_path": nb_path}) if nb_metadata_overrides: nb_metadata.update(nb_metadata_overrides) # validate and populate defaults # FIXME: Maybe improve this by implementing a "skip_validation" flag # in the config class self.config = None if not skip_validation: self.config = NotebookConfig(**nb_metadata) self.pipeline = Pipeline(self.config) def _read_notebook(self): if not os.path.exists(self.nb_path): raise ValueError("NotebookProcessor could not find a notebook at" " path %s" % self.nb_path) return nb.read(self.nb_path, as_version=nb.NO_CONVERT) def to_pipeline(self): """Convert an annotated Notebook to a Pipeline object.""" (pipeline_parameters_source, pipeline_metrics_source, imports_and_functions) = self.parse_notebook() self.parse_pipeline_parameters(pipeline_parameters_source) self.pipeline.set_volume_pipeline_parameters() # get a list of variables that need to be logged as pipeline metrics pipeline_metrics = ast.parse_metrics_print_statements( pipeline_metrics_source) # run static analysis over the source code dependencies.dependencies_detection( self.pipeline, imports_and_functions=imports_and_functions) dependencies.assign_metrics(self.pipeline, pipeline_metrics) # if there are multiple DAG leaves, add an empty step at the end of the # pipeline for final snapshot leaf_steps = self.pipeline.get_leaf_steps() if self.config.autosnapshot and len(leaf_steps) > 1: _name = "final_auto_snapshot" self.pipeline.add_step(Step(name=_name, source=[])) # add a link from all the last steps of the pipeline to # the final auto snapshot one. for step in leaf_steps: self.pipeline.add_edge(step.name, _name) # FIXME: Move this to a base class Processor, to be executed by default # after `to_pipeline`, so that it is agnostic to the type of # processor. for step in self.pipeline.steps: step.config.update(self.pipeline.config.steps_defaults) # TODO: Additional action required: # Run a static analysis over every step to check that pipeline # parameters are not assigned with new values. return self.pipeline def parse_pipeline_parameters(self, source: str): """Get pipeline parameters from source code.""" pipeline_parameters = ast.parse_assignments_expressions(source) for name, (v_type, v_value) in pipeline_parameters.items(): pipeline_parameters[name] = ast.PipelineParam(v_type, v_value) self.pipeline.pipeline_parameters = pipeline_parameters def parse_notebook(self): """Creates a NetworkX graph based on the input notebook's tags. Cell's source code are embedded into the graph as node attributes. """ # will be assigned at the end of each for loop prev_step_name = None # All the code cells that have to be pre-pended to every pipeline step # (i.e., imports and functions) are merged here imports_block = list() functions_block = list() # Variables that will become pipeline parameters pipeline_parameters = list() # Variables that will become pipeline metrics pipeline_metrics = list() for c in self.notebook.cells: if c.cell_type != "code": continue tags = self.parse_cell_metadata(c.metadata) if len(tags['step_names']) > 1: raise NotImplementedError("Kale does not yet support multiple" " step names in a single notebook" " cell. One notebook cell was found" " with %s step names" % tags['step_names']) step_name = (tags['step_names'][0] if 0 < len(tags['step_names']) else None) if step_name == 'skip': # when the cell is skipped, don't store `skip` as the previous # active cell continue if step_name == 'pipeline-parameters': pipeline_parameters.append(c.source) prev_step_name = step_name continue if step_name == 'imports': imports_block.append(c.source) prev_step_name = step_name continue if step_name == 'functions': functions_block.append(c.source) prev_step_name = step_name continue if step_name == 'pipeline-metrics': pipeline_metrics.append(c.source) prev_step_name = step_name continue # if none of the above apply, then we are parsing a code cell with # a block names and (possibly) some dependencies # if the cell was not tagged with a step name, # add the code to the previous cell if not step_name: if prev_step_name == 'imports': imports_block.append(c.source) elif prev_step_name == 'functions': functions_block.append(c.source) elif prev_step_name == 'pipeline-parameters': pipeline_parameters.append(c.source) elif prev_step_name == 'pipeline-metrics': pipeline_metrics.append(c.source) # current_block might be None in case the first cells of the # notebooks have not been tagged. elif prev_step_name: # this notebook cell will be merged to a previous one that # specified a step name self.pipeline.get_step(prev_step_name).merge_code(c.source) else: # in this branch we are sure that we are reading a code cell # with a step tag, so we must not allow for pipeline-metrics if prev_step_name == 'pipeline-metrics': raise ValueError("Tag pipeline-metrics must be placed on a" " cell at the end of the Notebook." " Pipeline metrics should be considered" " as a result of the pipeline execution" " and not of single steps.") # add node to DAG, adding tags and source code of notebook cell if step_name not in self.pipeline.nodes: step = Step(name=step_name, source=[c.source], ins=set(), outs=set(), limits=tags.get("limits", {}), labels=tags.get("labels", {}), annotations=tags.get("annotations", {})) self.pipeline.add_step(step) for _prev_step in tags['prev_steps']: if _prev_step not in self.pipeline.nodes: raise ValueError("Step %s does not exist. It was " "defined as previous step of %s" % (_prev_step, tags['step_names'])) self.pipeline.add_edge(_prev_step, step_name) else: self.pipeline.get_step(step_name).merge_code(c.source) prev_step_name = step_name # Prepend any `imports` and `functions` cells to every Pipeline step for step in self.pipeline.steps: step.source = imports_block + functions_block + step.source # merge together pipeline parameters pipeline_parameters = '\n'.join(pipeline_parameters) # merge together pipeline metrics pipeline_metrics = '\n'.join(pipeline_metrics) imports_and_functions = "\n".join(imports_block + functions_block) return pipeline_parameters, pipeline_metrics, imports_and_functions def parse_cell_metadata(self, metadata): """Parse a notebook's cell's metadata field. The Kale UI writes specific tags inside the 'tags' field, as a list of string tags. Supported tags are defined by _TAGS_LANGUAGE. Args: metadata (dict): a dict containing a notebook's cell's metadata Returns (dict): parsed tags based on Kale tagging language """ parsed_tags = dict() # `step_names` is a list because a notebook cell might be assigned to # more than one Pipeline step. parsed_tags['step_names'] = list() parsed_tags['prev_steps'] = list() # define intermediate variables so that dicts are not added to a steps # when they are empty cell_annotations = dict() cell_labels = dict() cell_limits = dict() # the notebook cell was not tagged if 'tags' not in metadata or len(metadata['tags']) == 0: return parsed_tags for t in metadata['tags']: if not isinstance(t, str): raise ValueError( "Tags must be string. Found tag %s of type %s" % (t, type(t))) # Check that the tag is defined by the Kale tagging language if any(re.match(_t, t) for _t in _TAGS_LANGUAGE) is False: raise ValueError("Unrecognized tag: {}".format(t)) # Special tags have a specific effect on the cell they belong to. # Specifically: # - skip: ignore the notebook cell # - pipeline-parameters: use the cell to populate Pipeline # parameters. The cell must contain only assignment # expressions # - pipeline-metrics: use the cell to populate Pipeline metrics. # The cell must contain only variable names # - imports: the code of the corresponding cell(s) will be # prepended to every Pipeline step # - functions: same as imports, but the corresponding code is # placed **after** `imports` special_tags = [ 'skip', 'pipeline-parameters', 'pipeline-metrics', 'imports', 'functions' ] if t in special_tags: parsed_tags['step_names'] = [t] return parsed_tags # now only `block|step` and `prev` tags remain to be parsed. tag_parts = t.split(':') tag_name = tag_parts.pop(0) if tag_name == "annotation": key, value = get_annotation_or_label_from_tag(tag_parts) cell_annotations.update({key: value}) if tag_name == "label": key, value = get_annotation_or_label_from_tag(tag_parts) cell_labels.update({key: value}) if tag_name == "limit": key, value = get_limit_from_tag(tag_parts) cell_limits.update({key: value}) # name of the future Pipeline step # TODO: Deprecate `block` in future release if tag_name in ["block", "step"]: if tag_name == "block": warnings.warn( "`block` tag will be deprecated in a future" " version, use `step` tag instead", DeprecationWarning) step_name = tag_parts.pop(0) parsed_tags['step_names'].append(step_name) # name(s) of the father Pipeline step(s) if tag_name == "prev": prev_step_name = tag_parts.pop(0) parsed_tags['prev_steps'].append(prev_step_name) if not parsed_tags['step_names'] and parsed_tags['prev_steps']: raise ValueError( "A cell can not provide `prev` annotations without " "providing a `block` or `step` annotation as well") if cell_annotations: if not parsed_tags['step_names']: raise ValueError( "A cell can not provide Pod annotations in a cell" " that does not declare a step name.") parsed_tags['annotations'] = cell_annotations if cell_limits: if not parsed_tags['step_names']: raise ValueError( "A cell can not provide Pod resource limits in a" " cell that does not declare a step name.") parsed_tags['limits'] = cell_limits return parsed_tags def get_pipeline_parameters_source(self): """Get just pipeline parameters cells from the notebook. Returns (str): pipeline parameters source code """ return self._get_reserved_tag_source(PIPELINE_PARAMETERS_TAG) def get_pipeline_metrics_source(self): """Get just pipeline metrics cells from the notebook. Returns (str): pipeline metrics source code """ # check that the pipeline metrics tag is only assigned to cells at # the end of the notebook detected = False tags = _TAGS_LANGUAGE[:] tags.remove(PIPELINE_METRICS_TAG) for c in self.notebook.cells: # parse only source code cells if c.cell_type != "code": continue # if we see a pipeline-metrics tag, set the flag if (('tags' in c.metadata and len(c.metadata['tags']) > 0 and any( re.match(PIPELINE_METRICS_TAG, t) for t in c.metadata['tags']))): detected = True continue # if we have the flag set and we detect any other tag from the tags # language, then raise error if (detected and 'tags' in c.metadata and len(c.metadata['tags']) > 0 and any([ any(re.match(tag, t) for t in c.metadata['tags']) for tag in tags ])): raise ValueError( "Tag pipeline-metrics tag must be placed on a " "cell at the end of the Notebook." " Pipeline metrics should be considered as a" " result of the pipeline execution and not of" " single steps.") return self._get_reserved_tag_source(PIPELINE_METRICS_TAG) def _get_reserved_tag_source(self, search_tag): """Get just the specific tag's source code. When searching for tag x, will return all cells that are tagged with x and, if untagged, follow cells with tag x. The result is a multiline string containing all the python code associated to x. Note: This is designed for 'special' tags, as the STEP_TAG is excluded from the match. Args: search_tag (str): the target tag Returns: the unified code of all the cells belonging to `search_tag` """ detected = False source = '' language = _TAGS_LANGUAGE[:] language.remove(search_tag) for c in self.notebook.cells: # parse only source code cells if c.cell_type != "code": continue # in case the previous cell was a `search_tag` cell and this # cell is not any other tag of the tag language: if (detected and (('tags' not in c.metadata or len(c.metadata['tags']) == 0) or all([ not any(re.match(tag, t) for t in c.metadata['tags']) for tag in language ]))): source += '\n' + c.source elif ( ('tags' in c.metadata and len(c.metadata['tags']) > 0 and any(re.match(search_tag, t) for t in c.metadata['tags']))): source += '\n' + c.source detected = True else: detected = False return source.strip()
def dependencies_detection(pipeline: Pipeline, imports_and_functions: str = ""): """Detect the data dependencies between nodes in the graph. The data dependencies detection algorithm roughly works as follows: 1. Traversing the graph in topological order, for every node `step` do 2. Detect the `ins` of current `step` by running PyFlakes on the source code. During this action the pipeline parameters are taken into consideration 3. Parse `step`'s global function definitions to get free variables (i.e. variables that would need to be marshalled in other steps that call these functions) - in this action pipeline parameters are taken into consideration. 4. Get all the function that `step` calls 5. For every `step`'s ancestor `anc` do - Get all the potential names (objects, functions, ...) of `anc` that could be marshalled (saved) - Intersect this with the `step`'s `ins` (from action 2) and add the result to `anc`'s `outs`. - for every `step`'s function call (action 4), check if this function was defined in `anc` and if it has free variables (action 3). If so, add to `step`'s `ins` and to `anc`'s `outs` these free variables. Args: pipeline: Pipeline object imports_and_functions: Multiline Python source that is prepended to every pipeline step Returns: annotated graph """ # resolve the data dependencies between steps, looping through the graph for step in pipeline.steps: # detect the INS dependencies of the CURRENT node---------------------- step_source = '\n'.join(step.source) # get the variables that this step is missing and the pipeline # parameters that it actually needs. ins, parameters = detect_in_dependencies( source_code=step_source, pipeline_parameters=pipeline.pipeline_parameters) fns_free_variables = detect_fns_free_variables( step_source, imports_and_functions, pipeline.pipeline_parameters) # Get all the function calls. This will be used below to check if any # of the ancestors declare any of these functions. Is that is so, the # free variables of those functions will have to be loaded. fn_calls = kale_ast.get_function_calls(step_source) # add OUT dependencies annotations in the PARENT nodes----------------- # Intersect the missing names of this father's child with all # the father's names. The intersection is the list of variables # that the father need to serialize # The ancestors are the the nodes that have a path to `step`, ordered # by path length. ins_left = ins.copy() for anc in (graphutils.get_ordered_ancestors(pipeline, step.name)): if not ins_left: # if there are no more variables that need to be marshalled, # stop the graph traverse break anc_step = pipeline.get_step(anc) anc_source = '\n'.join(anc_step.source) # get all the marshal candidates from father's source and intersect # with the required names of the current node marshal_candidates = kale_ast.get_marshal_candidates(anc_source) outs = ins_left.intersection(marshal_candidates) # Remove the ins that have already been assigned to an ancestor. ins_left.difference_update(outs) # Include free variables to_remove = set() for fn_call in fn_calls: anc_fns_free_vars = anc_step.fns_free_variables if fn_call in anc_fns_free_vars.keys(): # the current step needs to load these variables fn_free_vars, used_params = anc_fns_free_vars[fn_call] # search if this function calls other functions (i.e. if # its free variables are found in the free variables dict) _left = list(fn_free_vars) while _left: _cur = _left.pop(0) # if the free var is itself a fn with free vars if _cur in anc_fns_free_vars: fn_free_vars.update(anc_fns_free_vars[_cur][0]) _left = _left + list(anc_fns_free_vars[_cur][0]) ins.update(fn_free_vars) # the current ancestor needs to save these variables outs.update(fn_free_vars) # add the parameters used by the function to the list # of pipeline parameters used by the step for param in used_params: parameters[param] = pipeline.pipeline_parameters[param] # Remove this function as it has been served. We don't want # other ancestors to save free variables for this function. # Using the helper to_remove because the set can not be # resized during iteration. to_remove.add(fn_call) # add the function and its free variables to the current # step as well. This is useful in case *another* function # will call this one (`fn_call`) in a child step. In this # way we can track the calls up to the last free variable. # (refer to test `test_dependencies_detection_recursive`) fns_free_variables[fn_call] = anc_fns_free_vars[fn_call] fn_calls.difference_update(to_remove) # Add to ancestor the new outs annotations. First merge the current # outs present in the anc with the new ones anc_step.outs.update(outs) step.ins = sorted(ins) step.parameters = parameters step.fns_free_variables = fns_free_variables