Esempio n. 1
0
def system_error_map(backend,
                     figsize=(800, 500),
                     show_title=True,
                     remove_badcal_edges=True,
                     background_color='white',
                     as_widget=False):
    """Plot the error map of a device.

    Args:
        backend (IBMQBackend or FakeBackend or DeviceSimulator or Properties): Plot the error map
                                                                               for a backend.
        figsize (tuple, optional): Figure size in pixels.
        show_title (bool, optional): Whether to show figure title.
        remove_badcal_edges (bool, optional): Whether to remove bad CX gate calibration data.
        background_color (str, optional): Background color, either 'white' or 'black'.
        as_widget (bool, optional): ``True`` if the figure is to be returned as a ``PlotlyWidget``.
            Otherwise the figure is to be returned as a ``PlotlyFigure``.

    Returns:
        PlotlyFigure or PlotlyWidget: The error map figure.

    Raises:
        KaleidoscopeError: Invalid input type.

    Example:
        .. jupyter-execute::

            from qiskit import *
            from kaleidoscope.qiskit.backends import system_error_map

            pro = IBMQ.load_account()
            backend = pro.backends.ibmq_vigo
            system_error_map(backend)

    """
    if not isinstance(
            backend,
        (IBMQBackend, DeviceSimulator, FakeBackend, BackendProperties)):
        raise KaleidoscopeError(
            'Input is not a valid backend or properties object.')

    if isinstance(backend, BackendProperties):
        backend = properties_to_pseudobackend(backend)

    meas_text_color = '#000000'
    if background_color == 'white':
        color_map = CMAP
        text_color = '#000000'
        plotly_cmap = BMY_PLOTLY
    elif background_color == 'black':
        color_map = CMAP
        text_color = '#FFFFFF'
        plotly_cmap = BMY_PLOTLY
    else:
        raise KaleidoscopeError(
            '"{}" is not a valid background_color selection.'.format(
                background_color))

    if backend.configuration().simulator and not isinstance(
            backend, DeviceSimulator):
        raise KaleidoscopeError('Requires a device backend, not a simulator.')

    config = backend.configuration()
    n_qubits = config.n_qubits
    cmap = config.coupling_map

    if n_qubits in DEVICE_LAYOUTS.keys():
        grid_data = DEVICE_LAYOUTS[n_qubits]
    else:
        fig = go.Figure()
        fig.update_layout(showlegend=False,
                          plot_bgcolor=background_color,
                          paper_bgcolor=background_color,
                          width=figsize[0],
                          height=figsize[1],
                          margin=dict(t=60, l=0, r=0, b=0))
        out = PlotlyWidget(fig)
        return out

    props = backend.properties().to_dict()

    t1s = []
    t2s = []
    for qubit_props in props['qubits']:
        count = 0
        for item in qubit_props:
            if item['name'] == 'T1':
                t1s.append(item['value'])
                count += 1
            elif item['name'] == 'T2':
                t2s.append(item['value'])
                count += 1
            if count == 2:
                break

    # U2 error rates
    single_gate_errors = [0] * n_qubits
    for gate in props['gates']:
        if gate['gate'] == 'u2':
            _qubit = gate['qubits'][0]
            single_gate_errors[_qubit] = gate['parameters'][0]['value']

    # Convert to percent
    single_gate_errors = 100 * np.asarray(single_gate_errors)
    avg_1q_err = np.mean(single_gate_errors)
    max_1q_err = max(single_gate_errors)

    single_norm = mpl.colors.Normalize(vmin=min(single_gate_errors),
                                       vmax=max_1q_err)

    q_colors = [
        mpl.colors.rgb2hex(color_map(single_norm(err)))
        for err in single_gate_errors
    ]

    if n_qubits > 1:
        line_colors = []
        if cmap:
            cx_errors = []
            for line in cmap:
                for item in props['gates']:
                    if item['qubits'] == line:
                        cx_errors.append(item['parameters'][0]['value'])
                        break
                else:
                    continue

            # Convert to percent
            cx_errors = 100 * np.asarray(cx_errors)

            # remove bad cx edges
            if remove_badcal_edges:
                cx_idx = np.where(cx_errors != 100.0)[0]
            else:
                cx_idx = np.arange(len(cx_errors))

            avg_cx_err = np.mean(cx_errors[cx_idx])

            cx_norm = mpl.colors.Normalize(vmin=min(cx_errors[cx_idx]),
                                           vmax=max(cx_errors[cx_idx]))

            for err in cx_errors:
                if err != 100.0 or not remove_badcal_edges:
                    line_colors.append(
                        mpl.colors.rgb2hex(color_map(cx_norm(err))))
                else:
                    line_colors.append("#ff0000")

    # Measurement errors
    read_err = []

    for qubit in range(n_qubits):
        for item in props['qubits'][qubit]:
            if item['name'] == 'readout_error':
                read_err.append(item['value'])

    read_err = 100 * np.asarray(read_err)
    avg_read_err = np.mean(read_err)
    max_read_err = np.max(read_err)

    if n_qubits < 10:
        num_left = n_qubits
        num_right = 0
    else:
        num_left = math.ceil(n_qubits / 2)
        num_right = n_qubits - num_left

    x_max = max([d[1] for d in grid_data])
    y_max = max([d[0] for d in grid_data])
    max_dim = max(x_max, y_max)

    qubit_size = 32
    font_size = 14
    offset = 0
    if cmap:
        if y_max / max_dim < 0.33:
            qubit_size = 24
            font_size = 10
            offset = 1

    if n_qubits > 5:
        right_meas_title = "Readout Error (%)"
    else:
        right_meas_title = None

    if cmap:
        cx_title = "CNOT Error Rate [Avg. {}%]".format(np.round(avg_cx_err, 3))
    else:
        cx_title = None
    fig = make_subplots(
        rows=2,
        cols=11,
        row_heights=[0.95, 0.05],
        vertical_spacing=0.15,
        specs=[[{
            "colspan": 2
        }, None, {
            "colspan": 6
        }, None, None, None, None, None, {
            "colspan": 2
        }, None, None],
               [{
                   "colspan": 4
               }, None, None, None, None, None, {
                   "colspan": 4
               }, None, None, None, None]],
        subplot_titles=("Readout Error (%)", None, right_meas_title,
                        "Hadamard Error Rate [Avg. {}%]".format(
                            np.round(avg_1q_err, 3)), cx_title))

    # Add lines for couplings
    if cmap and n_qubits > 1:
        for ind, edge in enumerate(cmap):
            is_symmetric = False
            if edge[::-1] in cmap:
                is_symmetric = True
            y_start = grid_data[edge[0]][0] + offset
            x_start = grid_data[edge[0]][1]
            y_end = grid_data[edge[1]][0] + offset
            x_end = grid_data[edge[1]][1]

            if is_symmetric:
                if y_start == y_end:
                    x_end = (x_end - x_start) / 2 + x_start
                    x_mid = x_end
                    y_mid = y_start

                elif x_start == x_end:
                    y_end = (y_end - y_start) / 2 + y_start
                    x_mid = x_start
                    y_mid = y_end

                else:
                    x_end = (x_end - x_start) / 2 + x_start
                    y_end = (y_end - y_start) / 2 + y_start
                    x_mid = x_end
                    y_mid = y_end
            else:
                if y_start == y_end:
                    x_mid = (x_end - x_start) / 2 + x_start
                    y_mid = y_end

                elif x_start == x_end:
                    x_mid = x_end
                    y_mid = (y_end - y_start) / 2 + y_start

                else:
                    x_mid = (x_end - x_start) / 2 + x_start
                    y_mid = (y_end - y_start) / 2 + y_start

            fig.append_trace(go.Scatter(
                x=[x_start, x_mid, x_end],
                y=[-y_start, -y_mid, -y_end],
                mode="lines",
                line=dict(width=6, color=line_colors[ind]),
                hoverinfo='text',
                hovertext='CX<sub>err</sub>{B}_{A} = {err} %'.format(
                    A=edge[0], B=edge[1], err=np.round(cx_errors[ind], 3))),
                             row=1,
                             col=3)

    # Add the qubits themselves
    qubit_text = []
    qubit_str = "<b>Qubit {}</b><br>H<sub>err</sub> = {} %"
    qubit_str += "<br>T1 = {} \u03BCs<br>T2 = {} \u03BCs"
    for kk in range(n_qubits):
        qubit_text.append(
            qubit_str.format(kk, np.round(single_gate_errors[kk], 3),
                             np.round(t1s[kk], 2), np.round(t2s[kk], 2)))

    if n_qubits > 20:
        qubit_size = 23
        font_size = 11

    if n_qubits > 50:
        qubit_size = 20
        font_size = 9

    qtext_color = []
    for ii in range(n_qubits):
        if single_gate_errors[ii] > 0.8 * max_1q_err:
            qtext_color.append('black')
        else:
            qtext_color.append('white')

    fig.append_trace(go.Scatter(x=[d[1] for d in grid_data],
                                y=[-d[0] - offset for d in grid_data],
                                mode="markers+text",
                                marker=go.scatter.Marker(size=qubit_size,
                                                         color=q_colors,
                                                         opacity=1),
                                text=[str(ii) for ii in range(n_qubits)],
                                textposition="middle center",
                                textfont=dict(size=font_size,
                                              color=qtext_color),
                                hoverinfo="text",
                                hovertext=qubit_text),
                     row=1,
                     col=3)

    fig.update_xaxes(row=1, col=3, visible=False)
    _range = None
    if offset:
        _range = [-3.5, 0.5]
    fig.update_yaxes(row=1, col=3, visible=False, range=_range)

    # H error rate colorbar
    min_1q_err = min(single_gate_errors)
    max_1q_err = max(single_gate_errors)
    if n_qubits > 1:
        fig.append_trace(go.Heatmap(z=[
            np.linspace(min_1q_err, max_1q_err, 100),
            np.linspace(min_1q_err, max_1q_err, 100)
        ],
                                    colorscale=plotly_cmap,
                                    showscale=False,
                                    hoverinfo='none'),
                         row=2,
                         col=1)

        fig.update_yaxes(row=2, col=1, visible=False)

        fig.update_xaxes(row=2,
                         col=1,
                         tickvals=[0, 49, 99],
                         ticktext=[
                             np.round(min_1q_err, 3),
                             np.round(
                                 (max_1q_err - min_1q_err) / 2 + min_1q_err,
                                 3),
                             np.round(max_1q_err, 3)
                         ])

    # CX error rate colorbar
    if cmap and n_qubits > 1:
        min_cx_err = min(cx_errors)
        max_cx_err = max(cx_errors)
        fig.append_trace(go.Heatmap(z=[
            np.linspace(min_cx_err, max_cx_err, 100),
            np.linspace(min_cx_err, max_cx_err, 100)
        ],
                                    colorscale=plotly_cmap,
                                    showscale=False,
                                    hoverinfo='none'),
                         row=2,
                         col=7)

        fig.update_yaxes(row=2, col=7, visible=False)

        min_cx_idx_err = min(cx_errors[cx_idx])
        max_cx_idx_err = max(cx_errors[cx_idx])
        fig.update_xaxes(row=2,
                         col=7,
                         tickvals=[0, 49, 99],
                         ticktext=[
                             np.round(min_cx_idx_err, 3),
                             np.round((max_cx_idx_err - min_cx_idx_err) / 2 +
                                      min_cx_idx_err, 3),
                             np.round(max_cx_idx_err, 3)
                         ])

    hover_text = "<b>Qubit {}</b><br>M<sub>err</sub> = {} %"
    # Add the left side meas errors
    for kk in range(num_left - 1, -1, -1):
        fig.append_trace(go.Bar(
            x=[read_err[kk]],
            y=[kk],
            orientation='h',
            marker=dict(color='#c7c7c5'),
            hoverinfo="text",
            hoverlabel=dict(font=dict(color=meas_text_color)),
            hovertext=[hover_text.format(kk, np.round(read_err[kk], 3))]),
                         row=1,
                         col=1)

    fig.append_trace(go.Scatter(x=[avg_read_err, avg_read_err],
                                y=[-0.25, num_left - 1 + 0.25],
                                mode='lines',
                                hoverinfo='none',
                                line=dict(color=text_color,
                                          width=2,
                                          dash='dot')),
                     row=1,
                     col=1)

    fig.update_yaxes(row=1,
                     col=1,
                     tickvals=list(range(num_left)),
                     autorange="reversed")

    fig.update_xaxes(
        row=1,
        col=1,
        range=[0, 1.1 * max_read_err],
        tickvals=[0, np.round(avg_read_err, 2),
                  np.round(max_read_err, 2)],
        showline=True,
        linewidth=1,
        linecolor=text_color,
        tickcolor=text_color,
        ticks="outside",
        showgrid=False,
        zeroline=False)

    # Add the right side meas errors, if any
    if num_right:
        for kk in range(n_qubits - 1, num_left - 1, -1):
            fig.append_trace(go.Bar(
                x=[-read_err[kk]],
                y=[kk],
                orientation='h',
                marker=dict(color='#c7c7c5'),
                hoverinfo="text",
                hoverlabel=dict(font=dict(color=meas_text_color)),
                hovertext=[hover_text.format(kk, np.round(read_err[kk], 3))]),
                             row=1,
                             col=9)

        fig.append_trace(go.Scatter(x=[-avg_read_err, -avg_read_err],
                                    y=[num_left - 0.25, n_qubits - 1 + 0.25],
                                    mode='lines',
                                    hoverinfo='none',
                                    line=dict(color=text_color,
                                              width=2,
                                              dash='dot')),
                         row=1,
                         col=9)

        fig.update_yaxes(
            row=1,
            col=9,
            tickvals=list(range(n_qubits - 1, num_left - 1, -1)),
            side='right',
            autorange="reversed",
        )

        fig.update_xaxes(
            row=1,
            col=9,
            range=[-1.1 * max_read_err, 0],
            tickvals=[
                0, -np.round(avg_read_err, 2), -np.round(max_read_err, 2)
            ],
            ticktext=[0,
                      np.round(avg_read_err, 2),
                      np.round(max_read_err, 2)],
            showline=True,
            linewidth=1,
            linecolor=text_color,
            tickcolor=text_color,
            ticks="outside",
            showgrid=False,
            zeroline=False)

    # Makes the subplot titles smaller than the 16pt default
    for ann in fig['layout']['annotations']:
        ann['font'] = dict(size=13)

    title_text = "{} Error Map".format(backend.name()) if show_title else ''
    fig.update_layout(showlegend=False,
                      plot_bgcolor=background_color,
                      paper_bgcolor=background_color,
                      width=figsize[0],
                      height=figsize[1],
                      title=dict(text=title_text, x=0.452),
                      title_font_size=20,
                      font=dict(color=text_color),
                      margin=dict(t=60, l=0, r=40, b=0))
    if as_widget:
        return PlotlyWidget(fig)
    return PlotlyFigure(fig)
Esempio n. 2
0
def system_gate_map(backend,
                    figsize=(None, None),
                    label_qubits=True,
                    qubit_size=None,
                    line_width=None,
                    font_size=None,
                    qubit_colors="#2f4b7c",
                    qubit_labels=None,
                    line_colors="#2f4b7c",
                    font_color="white",
                    background_color='white',
                    as_widget=False):
    """Plots an interactive gate map of a device.

    Args:
        backend (IBMQBackend or FakeBackend or DeviceSimulator or Properties): Plot the error map
                                                                               for a backend.
        figsize (tuple): Output figure size (wxh) in pixels.
        label_qubits (bool): Labels for the qubits.
        qubit_size (float): Size of qubit marker.
        line_width (float): Width of lines.
        font_size (float): Font size of qubit labels.
        qubit_colors (str or list): A list of colors for the qubits. If a single color is given,
                                    it's used for all qubits.
        qubit_labels (list): A list of qubit labels
        line_colors (str or list): A list of colors for each line from the coupling map. If a
                                   single color is given, it's used for all lines.
        font_color (str): The font color for the qubit labels.
        background_color (str): The background color, either 'white' or 'black'.
        as_widget (bool): Return the figure as a widget.

    Returns:
        PlotlyFigure or PlotlyWidget: Returned figure instance.

    Raises:
        KaleidoscopeError: Invalid input object.

    Example:
        .. jupyter-execute::

           from qiskit import *
           from kaleidoscope.qiskit.backends import system_gate_map

           pro = IBMQ.load_account()
           backend = pro.backends.ibmq_vigo
           system_gate_map(backend)
    """
    if not isinstance(
            backend,
        (IBMQBackend, DeviceSimulator, FakeBackend, BackendProperties)):
        raise KaleidoscopeError(
            'Input is not a valid backend or properties object.')

    if isinstance(backend, BackendProperties):
        backend = properties_to_pseudobackend(backend)

    config = backend.configuration()
    n_qubits = config.n_qubits
    cmap = config.coupling_map

    # set coloring
    if isinstance(qubit_colors, str):
        qubit_colors = [qubit_colors] * n_qubits
    if isinstance(line_colors, str):
        line_colors = [line_colors] * len(cmap) if cmap else []

    if str(n_qubits) in LAYOUTS['layouts'].keys():
        kind = 'generic'
        if backend.name() in LAYOUTS['special_names']:
            if LAYOUTS['special_names'][backend.name()] in LAYOUTS['layouts'][
                    str(n_qubits)]:
                kind = LAYOUTS['special_names'][backend.name()]
        grid_data = LAYOUTS['layouts'][str(n_qubits)][kind]
    else:
        fig = go.Figure()
        fig.update_layout(showlegend=False,
                          plot_bgcolor=background_color,
                          paper_bgcolor=background_color,
                          width=figsize[0],
                          height=figsize[1],
                          margin=dict(t=30, l=0, r=0, b=0))

        if as_widget:
            return PlotlyWidget(fig)
        return PlotlyFigure(fig)

    offset = 0
    if cmap:
        if n_qubits in [14, 15, 16]:
            offset = 1
            if qubit_size is None:
                qubit_size = 24
            if font_size is None:
                font_size = 10
            if line_width is None:
                line_width = 4
            if figsize == (None, None):
                figsize = (400, 200)
        elif n_qubits == 27:
            if qubit_size is None:
                qubit_size = 24
            if font_size is None:
                font_size = 10
            if line_width is None:
                line_width = 4
            if figsize == (None, None):
                figsize = (400, 300)
        else:
            if qubit_size is None:
                qubit_size = 32
            if font_size is None:
                font_size = 14
            if line_width is None:
                line_width = 6
            if figsize == (None, None):
                figsize = (300, 300)
    else:
        if figsize == (None, None):
            figsize = (300, 300)
        if qubit_size is None:
            qubit_size = 30

    fig = go.Figure()

    # Add lines for couplings
    if cmap:
        for ind, edge in enumerate(cmap):
            is_symmetric = False
            if edge[::-1] in cmap:
                is_symmetric = True
            y_start = grid_data[edge[0]][0] + offset
            x_start = grid_data[edge[0]][1]
            y_end = grid_data[edge[1]][0] + offset
            x_end = grid_data[edge[1]][1]

            if is_symmetric:
                if y_start == y_end:
                    x_end = (x_end - x_start) / 2 + x_start
                    x_mid = x_end
                    y_mid = y_start

                elif x_start == x_end:
                    y_end = (y_end - y_start) / 2 + y_start
                    x_mid = x_start
                    y_mid = y_end

                else:
                    x_end = (x_end - x_start) / 2 + x_start
                    y_end = (y_end - y_start) / 2 + y_start
                    x_mid = x_end
                    y_mid = y_end
            else:
                if y_start == y_end:
                    x_mid = (x_end - x_start) / 2 + x_start
                    y_mid = y_end

                elif x_start == x_end:
                    x_mid = x_end
                    y_mid = (y_end - y_start) / 2 + y_start

                else:
                    x_mid = (x_end - x_start) / 2 + x_start
                    y_mid = (y_end - y_start) / 2 + y_start

            fig.add_trace(
                go.Scatter(x=[x_start, x_mid, x_end],
                           y=[-y_start, -y_mid, -y_end],
                           mode="lines",
                           hoverinfo='none',
                           line=dict(width=line_width,
                                     color=line_colors[ind])))

    # Add the qubits themselves
    qubit_text = []
    qubit_str = "<b>Qubit {}"
    for num in range(n_qubits):
        qubit_text.append(
            qubit_str.format(qubit_labels[num] if qubit_labels else num))

    if qubit_labels is None:
        qubit_labels = [str(ii) for ii in range(n_qubits)]

    if n_qubits > 50:
        if qubit_size is None:
            qubit_size = 20
        if font_size is None:
            font_size = 9

    fig.add_trace(
        go.Scatter(x=[d[1] for d in grid_data],
                   y=[-d[0] - offset for d in grid_data],
                   mode="markers+text",
                   marker=go.scatter.Marker(size=qubit_size,
                                            color=qubit_colors,
                                            opacity=1),
                   text=qubit_labels if label_qubits else '',
                   textposition="middle center",
                   textfont=dict(size=font_size, color=font_color),
                   hoverinfo="text" if label_qubits else 'none',
                   hovertext=qubit_text))

    fig.update_xaxes(visible=False)
    _range = None
    if offset:
        _range = [-3.5, 0.5]
    fig.update_yaxes(visible=False, range=_range)

    fig.update_layout(showlegend=False,
                      plot_bgcolor=background_color,
                      paper_bgcolor=background_color,
                      width=figsize[0],
                      height=figsize[1],
                      margin=dict(t=30, l=0, r=0, b=0))

    if as_widget:
        return PlotlyWidget(fig)
    return PlotlyFigure(fig)
Esempio n. 3
0
def bloch_sphere(vectors=None,
                 vectors_color=None,
                 vectors_alpha=None,
                 vectors_annotation=False,
                 points=None,
                 points_color=None,
                 points_alpha=None,
                 figsize=(350, 350),
                 label_fontsize=16,
                 annotation_fontsize=10,
                 as_widget=False):
    """Generates a Bloch sphere from a given collection of vector
    and/or points data expressed in cartesian coordinates, [x, y, z].

    Parameters:
        vectors (list, ndarray): Collection of one or more vectors to display.
        vectors_color (str or list): List of colors to use when plotting vectors.
        vectors_alpha (float or list): List of alphas to use when plotting vectors.
        vectors_annotation (bool or list): Boolean values to determine if a
                                           annotation should be displayed.
        points (list, ndarray): Collection of one or more points to display.
        points_color (str or list): List of colors to use when plotting points.
        points_alpha (float or list): List of alphas to use when plotting points.
        figsize (tuple): Figure size in pixels.
        label_fontsize (int): Font size for axes labels.
        annotation_fontsize (int): Font size for annotations.
        as_widget (bool): Return plot as a widget.

    Returns:
        PlotlyFigure or  PlotlyWidget: A Plotly figure or widget instance

    Raises:
        ValueError: Input lengths do not match.
        KaleidoscopeError: Invalid vector input.

    Example:
        .. jupyter-execute::

            import numpy as np
            from matplotlib.colors import LinearSegmentedColormap, rgb2hex
            from kaleidoscope.interactive import bloch_sphere

            cm = LinearSegmentedColormap.from_list('graypurple', ["#999999", "#AA00FF"])

            pointsx = [[0, -np.sin(th), np.cos(th)] for th in np.linspace(0, np.pi/2, 20)]
            pointsz = [[np.sin(th), -np.cos(th), 0] for th in np.linspace(0, 3*np.pi/4, 30)]

            points = pointsx + pointsz

            points_alpha = [np.linspace(0.8, 1, len(points))]

            points_color = [[rgb2hex(cm(kk)) for kk in np.linspace(-1,1,len(points))]]

            vectors_color = ["#777777", "#AA00FF"]

            bloch_sphere(points=points,
                         vectors=[[0, 0, 1], [1/np.sqrt(2), 1/np.sqrt(2), 0]],
                         vectors_color=vectors_color,
                         points_alpha=points_alpha,
                         points_color=points_color)
    """

    # Output figure instance
    fig = go.Figure()

    # List for vector annotations, if any
    fig_annotations = []

    idx = 0
    if points is not None:

        nest_depth = nest_level(points)
        # Take care of single point passed
        if nest_depth == 1:
            points = [[points]]
        # A single list of points passes
        elif nest_depth == 2:
            points = [points]
        # nest_depth = 3 means multiple lists passed

        if points_color is None:
            # passed a single point
            if nest_depth == 1:
                points_color = [DARK2[0]]
            elif nest_depth == 2:
                points_color = [[
                    DARK2[kk % 8] for kk in range(len(points[0]))
                ]]

            elif nest_depth == 3:
                points_color = []
                for kk, pnts in enumerate(points):
                    points_color.append(DARK2[kk % 8] * len(pnts))

        if nest_depth == 2 and nest_level(points_color) == 1:
            points_color = [points_color]

        if isinstance(points_color, str):
            points_color = [points_color]

        if points_alpha is None:
            points_alpha = [[1.0] * len(p) for p in points]

        if nest_depth == 2 and nest_level(points_alpha) == 1:
            points_alpha = [points_alpha]

        if isinstance(points_alpha, (int, float)):
            points_alpha = [[points_alpha]]

        for idx, point_collection in enumerate(points):
            x_pnts = []
            y_pnts = []
            z_pnts = []
            if isinstance(points_color[idx], str):
                _colors = [points_color[idx]] * len(point_collection)
            else:
                _colors = points_color[idx]

            if len(points_alpha[idx]) != len(point_collection):
                err_str = 'number of alpha values ({}) does not equal number of points ({})'
                raise ValueError(
                    err_str.format(len(points_alpha[idx]), len(x_pnts)))

            mcolors = []
            for kk, point in enumerate(point_collection):
                x_pnts.append(point[0])
                y_pnts.append(point[1])
                z_pnts.append(point[2])

                mcolors.append("rgba({},{},{},{})".format(
                    *hex_to_rgb(_colors[kk]), points_alpha[idx][kk]))

            fig.add_trace(
                go.Scatter3d(
                    x=x_pnts,
                    y=y_pnts,
                    z=z_pnts,
                    mode='markers',
                    marker=dict(size=7, color=mcolors),
                ))
            idx += 1

    if vectors is not None:

        if vectors.__class__.__name__ in ['Statevector'] \
                and 'qiskit' in vectors.__class__.__module__:
            vectors = bloch_components(vectors.data)

        elif not isinstance(vectors[0], (list, np.ndarray)):
            if vectors[0].__class__.__name__ not in ['Statevector']:
                vectors = [[vectors[0], vectors[1], vectors[2]]]

        new_vecs = []
        for vec in vectors:
            if vec.__class__.__name__ in [
                    'Statevector'
            ] and 'qiskit' in vec.__class__.__module__:
                # pylint: disable=no-member
                new_vecs.append(bloch_components(vec.data)[0])
            else:
                nst_lvl = nest_level(vec)
                if nst_lvl == 1:
                    new_vecs.append(vec)
                elif nst_lvl == 2:
                    new_vecs.append(vec[0])
                else:
                    raise KaleidoscopeError("Invalid vector input.")

        if vectors_color is None:
            vectors_color = [
                DARK2[kk + idx % 8] for kk in range(len(new_vecs))
            ]

        if isinstance(vectors_color, str):
            vectors_color = [vectors_color]

        if vectors_alpha is None:
            vectors_alpha = [1.0] * len(new_vecs)

        if isinstance(vectors_alpha, (int, float)):
            vectors_alpha = [vectors_alpha]

        if vectors_annotation is True:
            vectors_annotation = [True] * len(new_vecs)
        elif not vectors_annotation:
            vectors_annotation = [False] * len(new_vecs)

        eps = 1e-12

        for idx, vec in enumerate(new_vecs):
            vec = np.asarray(vec)
            if np.linalg.norm(vec) > 1.0 + eps:
                raise ValueError('Vector norm must be <= 1.')
            # So that line does not go out of arrow head
            vec_line = vec / 1.05

            color_str = "rgba({},{},{},{})".format(
                *hex_to_rgb(vectors_color[idx]), vectors_alpha[idx])

            fig.add_trace(
                go.Scatter3d(x=[0, vec_line[0]],
                             y=[0, vec_line[1]],
                             z=[0, vec_line[2]],
                             mode="lines",
                             hoverinfo=None,
                             line=dict(color=color_str, width=10)))

            fig.add_trace(
                go.Cone(x=[vec[0]],
                        y=[vec[1]],
                        z=[vec[2]],
                        u=[vec[0]],
                        v=[vec[1]],
                        w=[vec[2]],
                        sizemode="absolute",
                        showscale=False,
                        opacity=vectors_alpha[idx],
                        colorscale=[vectors_color[idx], vectors_color[idx]],
                        sizeref=0.25,
                        anchor="tip"))

            if vectors_annotation[idx]:
                fig_annotations.append(
                    dict(
                        showarrow=False,
                        x=vec[0] * 1.05,
                        y=vec[1] * 1.05,
                        z=vec[2] * 1.05,
                        text="[{},<br> {},<br> {}]".format(
                            round(vec[0], 3), round(vec[1], 3),
                            round(vec[2], 3)),
                        align='left',
                        borderpad=3,
                        xanchor='right' if vec[1] <= 0 else "left",
                        xshift=10,
                        bgcolor="#53565F",
                        font=dict(
                            size=annotation_fontsize,
                            color="#ffffff",
                            family="Courier New, monospace",
                        ),
                    ))
    # Start construction of sphere
    # Sphere
    fig.add_trace(BSPHERE())

    # latitudes
    for kk in LATS:
        fig.add_trace(kk)

    # longitudes
    for kk in LONGS:
        fig.add_trace(kk)

    # z-axis
    fig.add_trace(ZAXIS)
    # x-axis
    fig.add_trace(XAXIS)
    # y-axis
    fig.add_trace(YAXIS)

    # zaxis label
    fig.add_trace(Z0LABEL(fontsize=label_fontsize))
    fig.add_trace(Z1LABEL(fontsize=label_fontsize))
    # xaxis label
    fig.add_trace(XLABEL(fontsize=label_fontsize))
    # yaxis label
    fig.add_trace(YLABEL(fontsize=label_fontsize))

    fig.update_layout(width=figsize[0],
                      height=figsize[1],
                      autosize=False,
                      hoverdistance=50,
                      showlegend=False,
                      scene_aspectmode='cube',
                      margin=dict(r=0, b=0, l=0, t=0),
                      scene=dict(annotations=fig_annotations,
                                 xaxis=dict(showbackground=False,
                                            range=[-1.2, 1.2],
                                            showspikes=False,
                                            visible=False),
                                 yaxis=dict(showbackground=False,
                                            range=[-1.2, 1.2],
                                            showspikes=False,
                                            visible=False),
                                 zaxis=dict(showbackground=False,
                                            range=[-1.2, 1.2],
                                            showspikes=False,
                                            visible=False)),
                      scene_camera=dict(eye=dict(x=1.5, y=0.4, z=0.4)))
    if as_widget:
        return PlotlyWidget(fig)

    return PlotlyFigure(fig, modebar=True)
Esempio n. 4
0
def bloch_disc(rho, figsize=None, title=None, as_widget=False):
    """Plot a Bloch disc for a single qubit.

    Parameters:
        rho (list or ndarray or Statevector or DensityMatrix): Input statevector, density matrix,
                                                               or Bloch components.
        figsize (tuple): Figure size in pixels, default=(200,275).
        title (str): Plot title.
        as_widget (bool): Return plot as a widget.

    Returns:
        PlotlyFigure: A Plotly figure instance
        PlotlyWidget : A Plotly widget if `as_widget=True`.

    Example:
        .. jupyter-execute::

            import numpy as np
            from qiskit import *
            from qiskit.quantum_info import Statevector

            from kaleidoscope.interactive import bloch_disc
            qc = QuantumCircuit(1)
            qc.ry(np.pi*np.random.random(), 0)
            qc.rz(np.pi*np.random.random(), 0)

            state = Statevector.from_instruction(qc)
            bloch_disc(state)

    """
    # A hack so I do not have to import the actual instances from Qiskit.
    if rho.__class__.__name__ in ['Statevector', 'DensityMatrix'] \
            and 'qiskit' in rho.__class__.__module__:
        rho = rho.data
    if len(rho) != 3:
        rho = np.asarray(rho, dtype=complex)
        comp = bloch_components(rho)
    else:
        comp = [rho]

    if title:
        title = [title] + ["\u2329Z\u232A"]
    else:
        title = [""] + ["\u2329Z\u232A"]

    if figsize is None:
        figsize = (200, 275)

    fig = make_subplots(rows=1, cols=2,
                        specs=[[{'type': 'domain'}]+[{'type': 'xy'}]],
                        subplot_titles=title,
                        column_widths=[0.93]+[0.07])

    fig.add_trace(bloch_sunburst(comp[0]), row=1, col=1)

    zval = comp[0][2]
    zrange = [k*np.ones(1) for k in np.linspace(-1, 1, 100)]

    idx = (np.abs(np.linspace(-1, 1, 100) - zval)).argmin()

    tickvals = np.array([0, 49, 99, idx])
    idx_sort = np.argsort(tickvals)
    tickvals = tickvals[idx_sort]

    ticktext = [-1, 0, 1, "\u25C0"+str(np.round(zval, 3))]
    if zval <= -0.95:
        ticktext[0] = ''
    elif abs(zval) <= 0.05:
        ticktext[1] = ''
    elif zval >= 0.95:
        ticktext[2] = ''

    ticktext = [ticktext[kk] for kk in idx_sort]

    fig.append_trace(go.Heatmap(z=zrange,
                                colorscale=BMY_PLOTLY,
                                showscale=False,
                                hoverinfo='none',
                                ),
                     row=1, col=2
                     )

    fig.update_yaxes(row=1, col=2, tickvals=tickvals,
                     ticktext=ticktext)

    fig.update_yaxes(row=1, col=2, side="right")
    fig.update_xaxes(row=1, col=2, visible=False)

    fig.update_layout(margin=dict(t=30, l=10, r=0, b=0),
                      height=figsize[0],
                      width=figsize[1],
                      hoverlabel=dict(font_size=16,
                                      font_family="courier,monospace",
                                      align='left'
                                      )
                      )
    for ann in fig['layout']['annotations']:
        ann['font'] = dict(size=14)

    if as_widget:
        return PlotlyWidget(fig)

    return PlotlyFigure(fig)
Esempio n. 5
0
def bloch_multi_disc(rho, figsize=None, titles=True, as_widget=False):
    """Plot Bloch discs for a multi-qubit state.

    Parameters:
        rho (list or ndarray or Statevector or DensityMatrix): Input statevector, density matrix.
        figsize (tuple): Figure size in pixels, default=(125*num_qubits, 150).
        titles (bool): Display titles.
        as_widget (bool): Return plot as a widget.

    Returns:
        PlotlyFigure: A Plotly figure instance
        PlotlyWidget : A Plotly widget if `as_widget=True`.

    Example:
        .. jupyter-execute::

            import numpy as np
            from qiskit import *
            from qiskit.quantum_info import Statevector
            from kaleidoscope.interactive import bloch_multi_disc

            N = 4
            qc = QuantumCircuit(N)
            qc.h(range(N))
            for kk in range(N):
                qc.ry(2*np.pi*np.random.random(), kk)
            for kk in range(N-1):
                qc.cx(kk,kk+1)
            for kk in range(N):
                qc.rz(2*np.pi*np.random.random(), kk)

            state = Statevector.from_instruction(qc)
            bloch_multi_disc(state)
    """
    # A hack so I do not have to import the actual instances from Qiskit.
    if rho.__class__.__name__ in ['Statevector', 'DensityMatrix'] \
            and 'qiskit' in rho.__class__.__module__:
        rho = rho.data

    rho = np.asarray(rho, dtype=complex)

    comp = bloch_components(rho)
    num = int(np.log2(rho.shape[0]))

    nrows = 1
    ncols = num

    if figsize is None:
        figsize = (ncols*125, 150)

    if titles:
        titles = ["Qubit {}".format(k) for k in range(num)] + ["\u2329Z\u232A"]
    else:
        titles = ["" for k in range(num)] + ["\u2329Z\u232A"]

    fig = make_subplots(rows=nrows, cols=ncols+1,
                        specs=[[{'type': 'domain'}]*ncols+[{'type': 'xy'}]],
                        subplot_titles=titles,
                        column_widths=[0.95/num]*num+[0.05])

    for jj in range(num):
        fig.add_trace(bloch_sunburst(comp[jj]), row=1, col=jj+1)

    zrange = [k*np.ones(1) for k in np.linspace(-1, 1, 100)]
    fig.append_trace(go.Heatmap(z=zrange,
                                colorscale=BMY_PLOTLY,
                                showscale=False,
                                hoverinfo='none',
                                ),
                     row=1, col=num+1)

    fig.update_yaxes(row=1, col=num+1, tickvals=[0, 49, 99],
                     ticktext=[-1, 0, 1])
    fig.update_yaxes(row=1, col=num+1, side="right")
    fig.update_xaxes(row=1, col=num+1, visible=False)

    fig.update_layout(margin=dict(t=50, l=0, r=15, b=30),
                      width=figsize[0],
                      height=figsize[1],
                      hoverlabel=dict(font_size=14,
                                      font_family="monospace",
                                      align='left'
                                      )
                      )
    # Makes the subplot titles smaller than the 16pt default
    for ann in fig['layout']['annotations']:
        ann['font'] = dict(size=16)

    if as_widget:
        return PlotlyWidget(fig)
    return PlotlyFigure(fig)
Esempio n. 6
0
def system_error_map(backend,
                     figsize=(None, None),
                     colormap=None,
                     background_color='white',
                     show_title=True,
                     remove_badcal_edges=True,
                     as_widget=False):
    """Plot the error map of a device.

    Args:
        backend (IBMQBackend or FakeBackend or DeviceSimulator or Properties): Plot the error map
                                                                               for a backend.
        figsize (tuple, optional): Figure size in pixels.
        colormap (Colormap): A matplotlib colormap.
        background_color (str, optional): Background color, either 'white' or 'black'.
        show_title (bool, optional): Whether to show figure title.
        remove_badcal_edges (bool, optional): Whether to remove bad CX gate calibration data.
        as_widget (bool, optional): ``True`` if the figure is to be returned as a ``PlotlyWidget``.
            Otherwise the figure is to be returned as a ``PlotlyFigure``.

    Returns:
        PlotlyFigure or PlotlyWidget: The error map figure.

    Raises:
        KaleidoscopeError: Invalid input type.

    Example:
        .. jupyter-execute::

            from qiskit import *
            from kaleidoscope.qiskit.backends import system_error_map

            pro = IBMQ.load_account()
            backend = pro.backends.ibmq_vigo
            system_error_map(backend)

    """
    if not isinstance(
            backend,
        (IBMQBackend, DeviceSimulator, FakeBackend, BackendProperties)):
        raise KaleidoscopeError(
            'Input is not a valid backend or properties object.')

    if isinstance(backend, BackendProperties):
        backend = properties_to_pseudobackend(backend)

    CMAP = BMW
    PLOTLY_CMAP = cmap_to_plotly(CMAP)

    if colormap is not None:
        CMAP = colormap
        PLOTLY_CMAP = cmap_to_plotly(CMAP)

    meas_text_color = '#000000'
    if background_color == 'white':
        color_map = CMAP
        text_color = '#000000'
        plotly_cmap = PLOTLY_CMAP
    elif background_color == 'black':
        color_map = CMAP
        text_color = '#FFFFFF'
        plotly_cmap = PLOTLY_CMAP
    else:
        raise KaleidoscopeError(
            '"{}" is not a valid background_color selection.'.format(
                background_color))

    if backend.configuration().simulator and not isinstance(
            backend, DeviceSimulator):
        raise KaleidoscopeError('Requires a device backend, not a simulator.')

    config = backend.configuration()
    n_qubits = config.n_qubits
    cmap = config.coupling_map

    if str(n_qubits) in LAYOUTS['layouts'].keys():
        kind = 'generic'
        if backend.name() in LAYOUTS['special_names']:
            if LAYOUTS['special_names'][backend.name()] in LAYOUTS['layouts'][
                    str(n_qubits)]:
                kind = LAYOUTS['special_names'][backend.name()]
        grid_data = LAYOUTS['layouts'][str(n_qubits)][kind]
    else:
        fig = go.Figure()
        fig.update_layout(showlegend=False,
                          plot_bgcolor=background_color,
                          paper_bgcolor=background_color,
                          width=figsize[0],
                          height=figsize[1],
                          margin=dict(t=60, l=0, r=0, b=0))
        out = PlotlyWidget(fig)
        return out

    props = backend.properties()

    freqs = [0] * n_qubits
    t1s = [0] * n_qubits
    t2s = [0] * n_qubits
    alphas = [0] * n_qubits
    for idx, qubit_props in enumerate(props.qubits):
        for item in qubit_props:
            if item.name == 'frequency':
                freqs[idx] = item.value
            elif item.name == 'T1':
                t1s[idx] = item.value
            elif item.name == 'T2':
                t2s[idx] = item.value
            elif item.name == 'anharmonicity':
                alphas[idx] = item.value

    # U2 error rates
    single_gate_errors = [0] * n_qubits
    single_gate_times = [0] * n_qubits
    for gate in props.gates:
        if gate.gate in ['u2', 'sx']:
            _qubit = gate.qubits[0]
            for gpar in gate.parameters:
                if gpar.name == 'gate_error':
                    single_gate_errors[_qubit] = gpar.value
                elif gpar.name == 'gate_length':
                    single_gate_times[_qubit] = gpar.value

    # Convert to log10
    single_gate_errors = np.log10(np.asarray(single_gate_errors))

    avg_1q_err = np.mean(single_gate_errors)
    max_1q_err = _round_log10_exp(np.max(single_gate_errors),
                                  rnd='up',
                                  decimals=1)
    min_1q_err = _round_log10_exp(np.min(single_gate_errors),
                                  rnd='down',
                                  decimals=1)

    single_norm = mpl.colors.Normalize(vmin=min_1q_err, vmax=max_1q_err)

    q_colors = [
        mpl.colors.rgb2hex(color_map(single_norm(err)))
        for err in single_gate_errors
    ]

    if n_qubits > 1:
        line_colors = []
        if cmap:
            cx_errors = []
            cx_times = []
            for line in cmap:
                for gate in props.gates:
                    if gate.qubits == line:
                        for gpar in gate.parameters:
                            if gpar.name == 'gate_error':
                                cx_errors.append(gpar.value)
                            elif gpar.name == 'gate_length':
                                cx_times.append(gpar.value)

            # Convert to array
            cx_errors = np.log10(np.asarray(cx_errors))

            # remove bad cx edges
            if remove_badcal_edges:
                cx_idx = np.where(cx_errors != 0.0)[0]
            else:
                cx_idx = np.arange(len(cx_errors))

            avg_cx_err = np.mean(cx_errors[cx_idx])
            min_cx_err = _round_log10_exp(np.min(cx_errors[cx_idx]),
                                          rnd='down',
                                          decimals=1)
            max_cx_err = _round_log10_exp(np.max(cx_errors[cx_idx]),
                                          rnd='up',
                                          decimals=1)

            cx_norm = mpl.colors.Normalize(vmin=min_cx_err, vmax=max_cx_err)

            for err in cx_errors:
                if err != 0.0 or not remove_badcal_edges:
                    line_colors.append(
                        mpl.colors.rgb2hex(color_map(cx_norm(err))))
                else:
                    line_colors.append("#ff0000")

    # Measurement errors
    read_err = [0] * n_qubits
    p01_err = [0] * n_qubits
    p10_err = [0] * n_qubits
    for qubit in range(n_qubits):
        for item in props.qubits[qubit]:
            if item.name == 'readout_error':
                read_err[qubit] = item.value
            elif item.name == 'prob_meas0_prep1':
                p01_err[qubit] = item.value
            elif item.name == 'prob_meas1_prep0':
                p10_err[qubit] = item.value

    read_err = np.asarray(read_err)
    avg_read_err = np.mean(read_err)
    max_read_err = np.max(read_err)
    p01_err = np.asarray(p01_err)
    p10_err = np.asarray(p10_err)

    if n_qubits < 10:
        num_left = n_qubits
        num_right = 0
    else:
        num_left = math.ceil(n_qubits / 2)
        num_right = n_qubits - num_left

    x_max = max([d[1] for d in grid_data])
    y_max = max([d[0] for d in grid_data])
    max_dim = max(x_max, y_max)

    qubit_size = 32
    font_size = 14
    offset = 0
    if cmap:
        if y_max / max_dim < 0.33:
            qubit_size = 24
            font_size = 10
            offset = 1

    if n_qubits > 5:
        right_meas_title = "Readout error"
    else:
        right_meas_title = None

    if cmap:
        cx_title = "CNOT error rate [Avg. {}]".format(
            '{:.2}\u22C510<sup>{}</sup>'.format(*_pow10_coeffs(avg_cx_err)))
    else:
        cx_title = None
    fig = make_subplots(
        rows=2,
        cols=11,
        row_heights=[0.95, 0.05],
        vertical_spacing=0.15,
        specs=[[{
            "colspan": 2
        }, None, {
            "colspan": 6
        }, None, None, None, None, None, {
            "colspan": 2
        }, None, None],
               [{
                   "colspan": 4
               }, None, None, None, None, None, {
                   "colspan": 4
               }, None, None, None, None]],
        subplot_titles=("Readout error", None, right_meas_title,
                        "SX error rate [Avg. {}]".format(
                            '{:.2}\u22C510<sup>{}</sup>'.format(
                                *_pow10_coeffs(avg_1q_err))), cx_title))

    # Add lines for couplings
    if cmap and n_qubits > 1:
        for ind, edge in enumerate(cmap):
            is_symmetric = False
            if edge[::-1] in cmap:
                is_symmetric = True
            y_start = grid_data[edge[0]][0] + offset
            x_start = grid_data[edge[0]][1]
            y_end = grid_data[edge[1]][0] + offset
            x_end = grid_data[edge[1]][1]

            if is_symmetric:
                if y_start == y_end:
                    x_end = (x_end - x_start) / 2 + x_start
                    x_mid = x_end
                    y_mid = y_start

                elif x_start == x_end:
                    y_end = (y_end - y_start) / 2 + y_start
                    x_mid = x_start
                    y_mid = y_end

                else:
                    x_end = (x_end - x_start) / 2 + x_start
                    y_end = (y_end - y_start) / 2 + y_start
                    x_mid = x_end
                    y_mid = y_end
            else:
                if y_start == y_end:
                    x_mid = (x_end - x_start) / 2 + x_start
                    y_mid = y_end

                elif x_start == x_end:
                    x_mid = x_end
                    y_mid = (y_end - y_start) / 2 + y_start

                else:
                    x_mid = (x_end - x_start) / 2 + x_start
                    y_mid = (y_end - y_start) / 2 + y_start

            cx_str = 'cnot<sub>err</sub> = {err}'
            cx_str += '<br>&#120591;<sub>cx</sub>     = {tau} ns'
            fig.append_trace(go.Scatter(
                x=[x_start, x_mid, x_end],
                y=[-y_start, -y_mid, -y_end],
                mode="lines",
                line=dict(width=6, color=line_colors[ind]),
                hoverinfo='text',
                hovertext=cx_str.format(
                    err='{:.3}\u22C510<sup>{}</sup>'.format(
                        *_pow10_coeffs(cx_errors[ind])),
                    tau=np.round(cx_times[ind], 2))),
                             row=1,
                             col=3)

    # Add the qubits themselves
    qubit_text = []
    qubit_str = "<b>Qubit {idx}</b>"
    qubit_str += "<br>freq = {freq} GHz"
    qubit_str += "<br>T<sub>1</sub>   = {t1} \u03BCs"
    qubit_str += "<br>T<sub>2</sub>   = {t2} \u03BCs"
    qubit_str += "<br>&#945;    = {anh} GHz"
    qubit_str += "<br>sx<sub>err</sub> = {err}"
    qubit_str += "<br>&#120591;<sub>sx</sub>   = {tau} ns"
    for kk in range(n_qubits):
        qubit_text.append(
            qubit_str.format(
                idx=kk,
                freq=np.round(freqs[kk], 5),
                t1=np.round(t1s[kk], 2),
                t2=np.round(t2s[kk], 2),
                anh=np.round(alphas[kk], 3) if alphas[kk] else 'NA',
                err='{:.3}\u22C510<sup>{}</sup>'.format(
                    *_pow10_coeffs(single_gate_errors[kk])),
                tau=np.round(single_gate_times[kk], 2)))

    if n_qubits > 20:
        qubit_size = 23
        font_size = 11

    if n_qubits > 50:
        qubit_size = 20
        font_size = 9

    qtext_color = []
    for ii in range(n_qubits):
        qtext_color.append(find_text_color(q_colors[ii]))

    fig.append_trace(go.Scatter(x=[d[1] for d in grid_data],
                                y=[-d[0] - offset for d in grid_data],
                                mode="markers+text",
                                marker=go.scatter.Marker(size=qubit_size,
                                                         color=q_colors,
                                                         opacity=1),
                                text=[str(ii) for ii in range(n_qubits)],
                                textposition="middle center",
                                textfont=dict(size=font_size,
                                              color=qtext_color),
                                hoverinfo="text",
                                hovertext=qubit_text),
                     row=1,
                     col=3)

    fig.update_xaxes(row=1, col=3, visible=False)
    _range = None
    if offset:
        _range = [-3.5, 0.5]
    fig.update_yaxes(row=1, col=3, visible=False, range=_range)

    # H error rate colorbar
    if n_qubits > 1:
        fig.append_trace(go.Heatmap(z=[
            np.linspace(min_1q_err, max_1q_err, 100),
            np.linspace(min_1q_err, max_1q_err, 100)
        ],
                                    colorscale=plotly_cmap,
                                    showscale=False,
                                    hoverinfo='none'),
                         row=2,
                         col=1)

        fig.update_yaxes(row=2, col=1, visible=False)

        mid_1q_err = _round_log10_exp(
            (max_1q_err - min_1q_err) / 2 + min_1q_err, rnd='up', decimals=1)

        fig.update_xaxes(row=2,
                         col=1,
                         tickfont=dict(size=13),
                         tickvals=[0, 49, 99],
                         ticktext=[
                             '{:.2}\u22C510<sup>{}</sup>'.format(
                                 *_pow10_coeffs(min_1q_err)),
                             '{:.2}\u22C510<sup>{}</sup>'.format(
                                 *_pow10_coeffs(mid_1q_err)),
                             '{:.2}\u22C510<sup>{}</sup>'.format(
                                 *_pow10_coeffs(max_1q_err)),
                         ])

    # CX error rate colorbar
    if cmap and n_qubits > 1:
        fig.append_trace(go.Heatmap(z=[
            np.linspace(min_cx_err, max_cx_err, 100),
            np.linspace(min_cx_err, max_cx_err, 100)
        ],
                                    colorscale=plotly_cmap,
                                    showscale=False,
                                    hoverinfo='none'),
                         row=2,
                         col=7)

        fig.update_yaxes(row=2, col=7, visible=False)

        mid_cx_err = (max_cx_err - min_cx_err) / 2 + min_cx_err
        fig.update_xaxes(
            row=2,
            col=7,
            tickfont=dict(size=13),
            tickvals=[0, 49, 99],
            ticktext=[
                '{:.2}\u22C510<sup>{}</sup>'.format(
                    *_pow10_coeffs(min_cx_err)),
                '{:.2}\u22C510<sup>{}</sup>'.format(
                    *_pow10_coeffs(mid_cx_err)),
                '{:.2}\u22C510<sup>{}</sup>'.format(*_pow10_coeffs(max_cx_err))
            ])

    hover_text = "<b>Qubit {idx}</b>"
    hover_text += "<br>M<sub>err</sub> = {err}"
    hover_text += "<br>P<sub>0|1</sub> = {p01}"
    hover_text += "<br>P<sub>1|0</sub> = {p10}"
    # Add the left side meas errors
    for kk in range(num_left - 1, -1, -1):
        fig.append_trace(go.Bar(
            x=[read_err[kk]],
            y=[kk],
            orientation='h',
            marker=dict(color='#c7c7c5'),
            hoverinfo="text",
            hoverlabel=dict(font=dict(color=meas_text_color)),
            hovertext=[
                hover_text.format(idx=kk,
                                  err=np.round(read_err[kk], 4),
                                  p01=np.round(p01_err[kk], 4),
                                  p10=np.round(p10_err[kk], 4))
            ]),
                         row=1,
                         col=1)

    fig.append_trace(go.Scatter(x=[avg_read_err, avg_read_err],
                                y=[-0.25, num_left - 1 + 0.25],
                                mode='lines',
                                hoverinfo='none',
                                line=dict(color=text_color,
                                          width=2,
                                          dash='dot')),
                     row=1,
                     col=1)

    fig.update_yaxes(row=1,
                     col=1,
                     tickvals=list(range(num_left)),
                     autorange="reversed")

    fig.update_xaxes(
        row=1,
        col=1,
        range=[0, 1.1 * max_read_err],
        tickvals=[0, np.round(avg_read_err, 2),
                  np.round(max_read_err, 2)],
        showline=True,
        linewidth=1,
        linecolor=text_color,
        tickcolor=text_color,
        ticks="outside",
        showgrid=False,
        zeroline=False)

    # Add the right side meas errors, if any
    if num_right:
        for kk in range(n_qubits - 1, num_left - 1, -1):
            fig.append_trace(go.Bar(
                x=[-read_err[kk]],
                y=[kk],
                orientation='h',
                marker=dict(color='#c7c7c5'),
                hoverinfo="text",
                hoverlabel=dict(font=dict(color=meas_text_color)),
                hovertext=[
                    hover_text.format(idx=kk,
                                      err=np.round(read_err[kk], 4),
                                      p01=np.round(p01_err[kk], 4),
                                      p10=np.round(p10_err[kk], 4))
                ]),
                             row=1,
                             col=9)

        fig.append_trace(go.Scatter(x=[-avg_read_err, -avg_read_err],
                                    y=[num_left - 0.25, n_qubits - 1 + 0.25],
                                    mode='lines',
                                    hoverinfo='none',
                                    line=dict(color=text_color,
                                              width=2,
                                              dash='dot')),
                         row=1,
                         col=9)

        fig.update_yaxes(
            row=1,
            col=9,
            tickvals=list(range(n_qubits - 1, num_left - 1, -1)),
            side='right',
            autorange="reversed",
        )

        fig.update_xaxes(
            row=1,
            col=9,
            range=[-1.1 * max_read_err, 0],
            tickvals=[
                0, -np.round(avg_read_err, 2), -np.round(max_read_err, 2)
            ],
            ticktext=[0,
                      np.round(avg_read_err, 2),
                      np.round(max_read_err, 2)],
            showline=True,
            linewidth=1,
            linecolor=text_color,
            tickcolor=text_color,
            ticks="outside",
            showgrid=False,
            zeroline=False)

    # Makes the subplot titles smaller than the 16pt default
    for ann in fig['layout']['annotations']:
        ann['font'] = dict(size=13)

    title_text = "{} error map".format(backend.name()) if show_title else ''
    fig.update_layout(showlegend=False,
                      plot_bgcolor=background_color,
                      paper_bgcolor=background_color,
                      width=figsize[0],
                      height=figsize[1],
                      title=dict(text=title_text, x=0.452),
                      title_font_size=20,
                      font=dict(color=text_color),
                      margin=dict(t=60, l=0, r=0, b=0),
                      hoverlabel=dict(font_size=14,
                                      font_family="courier,monospace",
                                      align='left'))
    if as_widget:
        return PlotlyWidget(fig)
    return PlotlyFigure(fig)