Esempio n. 1
0
 def test_generate_points(self, octrees, lengths, max_level):
     out_level, pyramids, exsum = scan_octrees(octrees, lengths)
     point_hierarchies = generate_points(octrees, pyramids, exsum)
     expected_point_hierarchies = []
     bits_t = uint8_to_bits(octrees).reshape(-1, 2, 2, 2).cpu()
     octree_first_idx = 0
     for bs, length in enumerate(lengths):
         expected_point_hierarchies.append(
             torch.tensor([[0, 0, 0]], dtype=torch.long))
         cur_bits_t = bits_t[octree_first_idx:octree_first_idx + length]
         offsets = torch.tensor([[0, 0, 0]], dtype=torch.int32)
         for i in range(max_level):
             next_offset = []
             cur_level_num_nodes = pyramids[bs, 0, i]
             level_first_idx = pyramids[bs, 1, i]
             for cur_level_node_idx in range(cur_level_num_nodes):
                 node_bits = cur_bits_t[level_first_idx +
                                        cur_level_node_idx]
                 offset = offsets[cur_level_node_idx]
                 point_coords = torch.nonzero(
                     node_bits, as_tuple=False) + offset.unsqueeze(0)
                 expected_point_hierarchies.append(point_coords)
                 next_offset.append(point_coords * 2)
             offsets = torch.cat(next_offset, dim=0)
         octree_first_idx += length
     expected_point_hierarchies = torch.cat(expected_point_hierarchies,
                                            dim=0).cuda().short()
     assert torch.equal(point_hierarchies, expected_point_hierarchies)
Esempio n. 2
0
    def test_feature_grids_to_spc(self, sparse_feature_grids,
                                  expected_out_feature_grids, device):
        octrees, lengths, features = feature_grids_to_spc(sparse_feature_grids)
        assert octrees.device.type == device
        assert features.device.type == device
        octrees = octrees.cuda()
        features = features.cuda()
        max_level, pyramids, exsum = scan_octrees(octrees, lengths)
        point_hierarchies = generate_points(octrees, pyramids, exsum)
        out_feature_grids = to_dense(point_hierarchies, pyramids, features,
                                     max_level)

        assert torch.equal(out_feature_grids, expected_out_feature_grids)
Esempio n. 3
0
    def test_generate_points(self, octrees, lengths):
        max_level, pyramids, exsum = scan_octrees(octrees, lengths)
        expected_point_hierarchies = torch.tensor([
            [0, 0, 0],
            [0, 0, 0], [1, 0, 0],
            [0, 0, 1], [0, 1, 0], [3, 0, 1],
            [1, 1, 3], [1, 3, 1], [6, 1, 3],

            [0, 0, 0],
            [1, 1, 1],
            [3, 2, 2], [3, 2, 3], [3, 3, 2],
            [7, 4, 5], [6, 4, 6], [6, 4, 7], [6, 5, 6], [6, 5, 7], [7, 4, 6], \
                [7, 4, 7], [7, 5, 6], [7, 5, 7], [6, 6, 4], [6, 7, 4], \
                [7, 6, 4], [7, 7, 4]
            ], device='cuda', dtype=torch.int16)

        point_hierarchies = generate_points(octrees, pyramids, exsum)

        assert torch.equal(point_hierarchies, expected_point_hierarchies)
Esempio n. 4
0
 def test_ones(self, batch_size, feature_dim, height, width, depth, dtype,
               device):
     feature_grids = torch.ones(
         (batch_size, feature_dim, height, width, depth),
         dtype=dtype,
         device=device)
     octrees, lengths, features = feature_grids_to_spc(feature_grids)
     assert octrees.device.type == device
     assert features.device.type == device
     octrees = octrees.cuda()
     features = features.cuda()
     max_level, pyramids, exsum = scan_octrees(octrees, lengths)
     point_hierarchies = generate_points(octrees, pyramids, exsum)
     out_feature_grids = to_dense(point_hierarchies, pyramids, features,
                                  max_level)
     assert torch.all(out_feature_grids[:, :, :height, :width, :depth] == 1)
     assert torch.all(out_feature_grids[:, :, height:] == 0)
     assert torch.all(out_feature_grids[:, :, :, width:] == 0)
     assert torch.all(out_feature_grids[..., depth:] == 0)
Esempio n. 5
0
    def test_simple(self, with_spc_to_dict):
        bits_t = torch.tensor(
            [[0, 0, 0, 1, 0, 0, 0, 1], [0, 0, 0, 0, 0, 1, 1, 0],
             [0, 0, 1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0],
             [1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0],
             [1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 0, 0, 0, 0],
             [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1],
             [0, 1, 0, 1, 0, 1, 0, 1]],
            device='cuda',
            dtype=torch.float)
        octrees = bits_to_uint8(torch.flip(bits_t, dims=(-1, )))
        lengths = torch.tensor([6, 5], dtype=torch.int)
        max_level, pyramids, exsum = scan_octrees(octrees, lengths)
        point_hierarchies = generate_points(octrees, pyramids, exsum)
        coalescent_features = torch.tensor([
            1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15.,
            16.
        ],
                                           device='cuda',
                                           dtype=torch.float).reshape(-1, 1)

        feat_idx = torch.tensor(
            [[0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
             [1, 1, 6, 7, 6, 6, 6, 6, 7, 7, 7, 7, 6, 6, 7, 7],
             [1, 3, 1, 4, 4, 4, 5, 5, 4, 4, 5, 5, 6, 7, 6, 7],
             [3, 1, 3, 5, 6, 7, 6, 7, 6, 7, 6, 7, 4, 4, 4, 4]],
            dtype=torch.long)

        expected_feature_grids = torch.zeros((2, 1, 8, 8, 8),
                                             dtype=torch.float,
                                             device='cuda')
        expected_feature_grids[feat_idx[0], :, feat_idx[1], feat_idx[2],
                               feat_idx[3]] = coalescent_features
        if with_spc_to_dict:
            feature_grids = to_dense(**Spc(octrees, lengths).to_dict(),
                                     input=coalescent_features)
        else:
            feature_grids = to_dense(point_hierarchies, pyramids,
                                     coalescent_features, max_level)

        assert torch.equal(feature_grids, expected_feature_grids)
Esempio n. 6
0
    def test_to_dense(self, batch_size, max_level, feature_dim):
        octrees, lengths = random_spc_octrees(batch_size, max_level, 'cuda')

        max_level, pyramids, exsum = scan_octrees(octrees, lengths)
        point_hierarchies = generate_points(octrees, pyramids, exsum)
        in_num_nodes = torch.sum(pyramids[:, 0, -2])
        coalescent_features = torch.rand((in_num_nodes, feature_dim),
                                         device='cuda',
                                         requires_grad=True)
        expected_size = 2**max_level
        feat_idx = []
        bs_start_idx = 0
        for bs in range(batch_size):
            start_idx = pyramids[bs, 1, -2] + bs_start_idx
            num_points = pyramids[bs, 0, -2]
            feat_idx.append(
                torch.nn.functional.pad(point_hierarchies[start_idx:start_idx +
                                                          num_points], (1, 0),
                                        value=bs))
            bs_start_idx += pyramids[bs, 1, -1]
        feat_idx = torch.cat(feat_idx, dim=0).permute(1, 0).long()
        expected_feature_grids = torch.zeros(
            (batch_size, feature_dim, expected_size, expected_size,
             expected_size),
            device='cuda')
        expected_feature_grids[feat_idx[0], :, feat_idx[1], feat_idx[2],
                               feat_idx[3]] = coalescent_features

        # test forward
        feature_grids = to_dense(point_hierarchies, pyramids,
                                 coalescent_features, max_level)
        assert torch.equal(expected_feature_grids, feature_grids)

        grad_out = torch.rand_like(feature_grids)
        feature_grids.backward(grad_out)
        octrees, lengths, coalescent_expected_grad = feature_grids_to_spc(
            grad_out, torch.any(feature_grids != 0, dim=1))
        assert torch.equal(coalescent_features.grad, coalescent_expected_grad)
Esempio n. 7
0
    def test_query(self):
        points = torch.tensor([[3, 2, 0], [3, 1, 1], [0, 0, 0], [3, 3, 3]],
                              device='cuda',
                              dtype=torch.short)
        octree = unbatched_points_to_octree(points, 2)
        length = torch.tensor([len(octree)], dtype=torch.int32)
        _, pyramid, prefix = scan_octrees(octree, length)

        query_points = torch.tensor(
            [[3, 2, 0], [3, 1, 1], [0, 0, 0], [3, 3, 3], [2, 2, 2], [1, 1, 1]],
            device='cuda',
            dtype=torch.short)

        point_hierarchy = generate_points(octree, pyramid, prefix)

        results = unbatched_query(octree, prefix, query_points, 2)

        expected_results = torch.tensor([7, 6, 5, 8, -1, -1],
                                        dtype=torch.long,
                                        device='cuda')

        assert torch.equal(point_hierarchy[results[:-2]], query_points[:-2])
        assert torch.equal(expected_results, results)
Esempio n. 8
0
    def test_ambiguous_raytrace(self):
        # TODO(ttakikawa):
        # Since 0.10.0, the behaviour of raytracing exactly between voxels
        # has been changed from no hits at all to hitting all adjacent voxels.
        # This has numerical ramifications because it may cause instability / error
        # in the estimation of optical thickness in the volume rendering process
        # among other issues. However, we have found that this doesn't lead to any
        # obvious visual errors, whereas the no hit case causes speckle noise.
        # We will eventually do a more thorough analysis of the numerical consideration of this
        # behaviour, but for now we choose to prevent obvious visual errors.

        octree = torch.tensor([255], dtype=torch.uint8, device='cuda')
        length = torch.tensor([1], dtype=torch.int32)
        max_level, pyramids, exsum = scan_octrees(octree, length)
        point_hierarchy = generate_points(octree, pyramids, exsum)
        origin = torch.tensor([[0., 0., 3.], [3., 3., 3.]],
                              dtype=torch.float,
                              device='cuda')
        direction = torch.tensor(
            [[0., 0., -1.], [-1. / 3., -1. / 3., -1. / 3.]],
            dtype=torch.float,
            device='cuda')
        ridx, pidx, depth = unbatched_raytrace(octree,
                                               point_hierarchy,
                                               pyramids[0],
                                               exsum,
                                               origin,
                                               direction,
                                               1,
                                               return_depth=True)
        expected_nuggets = torch.tensor(
            [[0, 2], [0, 1], [0, 4], [0, 6], [0, 3], [0, 5], [0, 8], [0, 7],
             [1, 8], [1, 1]],
            device='cuda',
            dtype=torch.int)
        assert torch.equal(ridx, expected_nuggets[..., 0])
        assert torch.equal(pidx, expected_nuggets[..., 1])
Esempio n. 9
0
def octree_to_spc(octree):
    lengths = torch.tensor([len(octree)], dtype=torch.int32)
    _, pyramid, prefix = spc_ops.scan_octrees(octree, lengths)
    points = spc_ops.generate_points(octree, pyramid, prefix)
    pyramid = pyramid[0]
    return points, pyramid, prefix
Esempio n. 10
0
 def point_hierarchy(self, octree, pyramid, exsum):
     return generate_points(octree, pyramid.unsqueeze(0), exsum)
Esempio n. 11
0
 def point_hierarchies(self, octrees, pyramids, exsum):
     return spc.generate_points(octrees, pyramids, exsum)