Esempio n. 1
0
    def test_ner_data(self):
        train_x, train_y = ChinaPeoplesDailyNerCorpus.get_sequence_tagging_data(
            'train')
        assert len(train_x) == len(train_y)
        assert len(train_x) > 0

        test_x, test_y = ChinaPeoplesDailyNerCorpus.get_sequence_tagging_data(
            'test')
        assert len(test_x) == len(test_y)
        assert len(test_x) > 0
Esempio n. 2
0
        blstm_layer = Bidirectional(LSTM(**self.hyper_parameters['lstm_layer']))(base_model.output)
        dense_layer = Dense(128, activation='tanh')(blstm_layer)
        crf = CRF(len(self.label2idx), sparse_target=False)
        crf_layer = crf(dense_layer)
        model = Model(base_model.inputs, crf_layer)
        model.compile(loss=crf_loss,
                      optimizer='adam',
                      metrics=[crf_accuracy])
        self.model = model
        self.model.summary()


if __name__ == "__main__":
    print("Hello world")
    from kashgari.utils.logger import init_logger
    init_logger()
    from kashgari.corpus import ChinaPeoplesDailyNerCorpus

    init_logger()

    x_train, y_train = ChinaPeoplesDailyNerCorpus.get_sequence_tagging_data()
    x_validate, y_validate = ChinaPeoplesDailyNerCorpus.get_sequence_tagging_data(data_type='validate')
    x_test, y_test = ChinaPeoplesDailyNerCorpus.get_sequence_tagging_data(data_type='test')

    tagger = BLSTMCRFModel()
    tagger.fit(x_train, y_train, epochs=2)
    tagger.evaluate(x_validate, y_validate)
    tagger.evaluate(x_test, y_test, debug_info=True)

    model = BLSTMCRFModel.load_model('/Users/brikerman/Downloads/KashgariNER.output/model')
    model.evaluate(x_test, y_test, debug_info=True)
Esempio n. 3
0
 def test_tagging_data(self):
     x, y = ChinaPeoplesDailyNerCorpus.get_sequence_tagging_data()
     self.assertGreater(len(x), 0)
     self.assertEqual(len(x), len(y))