Esempio n. 1
0
def LoadHDF5(HDF5Filename, header=False):
    try:
        d = scape.DataSet(HDF5Filename, baseline=opts.baseline)
    except ValueError:
        print "WARNING:THIS FILE", HDF5Filename.split(
            '/'
        )[-1], "IS CORRUPTED AND SCAPE WILL NOT PROCESS IT, YOU MAY NEED TO REAUGMENT IT,BUT ITS AN EXPENSIVE TASK..!!"
    else:
        print "SUCCESSFULLY LOADED: Wellcome to scape Library and scape is busy processing your request"

        lo_freq = 4200.0 + d.freqs[len(d.freqs) / 2.0]

        # try to check all the rfi channels across all the channels
        rfi_chan_across_all = d.identify_rfi_channels()

        d = d.select(freqkeep=range(100, 420))
        # rfi channels across fringe finder channels ( i.e frequancy range around 100 to 420)
        rfi_channels = d.identify_rfi_channels()
        freqs = d.freqs
        sky_frequency = d.freqs[rfi_channels]
        ant = d.antenna.name
        data_filename = os.path.splitext(
            os.path.basename(HDF5Filename))[0] + '.h5'
        # obs_date = os.path.splitext(os.path.basename(HDF5Filename))[0]
        #date = time.ctime(float(obs_date))

        for compscan in d.compscans:
            azimuth = np.hstack(
                [scan.pointing['az'] for scan in compscan.scans])
            elevation = np.hstack(
                [scan.pointing['el'] for scan in compscan.scans])
            compscan_times = np.hstack(
                [scan.timestamps for scan in compscan.scans])
            compscan_start_time = np.hstack(
                [scan.timestamps[0] for scan in compscan.scans])
            compscan_end_time = np.hstack(
                [scan.timestamps[-1] for scan in compscan.scans])
            middle_time = np.median(compscan_times, axis=None)
            obs_date = katpoint.Timestamp(middle_time)
            middle_start_time = np.median(compscan_start_time)
            middle_end_time = np.median(compscan_end_time)
            end_time = katpoint.Timestamp(middle_end_time)
            min_compscan_az = katpoint.rad2deg(azimuth.min())
            max_compscan_az = katpoint.rad2deg(azimuth.max())
            min_compscan_el = katpoint.rad2deg(elevation.min())
            max_compscan_el = katpoint.rad2deg(elevation.max())
            start_time = katpoint.Timestamp(middle_start_time)
            requested_azel = compscan.target.azel(middle_time)
            #ant_az = katpoint.rad2deg(np.array(requested_azel[0]))
            #ant_el = katpoint.rad2deg(np.array(requested_azel[1]))
            target = compscan.target.name

            f = file(opts.outfilebase + '.csv', 'a')
            for index in range(0, len(rfi_channels)):
                rfi_chan = rfi_channels[index] + 100
                rfi_freq = freqs[rfi_channels[index]]
                f.write('%s, %s, %s, %s, %s,%f, %f,%f,%f, %f, %d, %f\n' % (data_filename,start_time, end_time, ant,target,min_compscan_az,max_compscan_az,\
                min_compscan_el, max_compscan_el,lo_freq, rfi_chan, rfi_freq))
            f.close()
Esempio n. 2
0
def remove_duplicates(sensor):
    """Remove duplicate timestamp values from sensor data.

    This sorts the 'timestamp' field of the sensor record array and removes any
    duplicate values, updating the corresponding 'value' and 'status' fields as
    well. If more than one timestamp have the same value, the value and status
    of the last of these timestamps are selected. If the values differ for the
    same timestamp, a warning is logged (and the last one is still picked).

    Parameters
    ----------
    sensor : :class:`SensorData` object, length N
        Sensor dataset, which acts like a record array with fields 'timestamp',
        'value' and 'status'

    Returns
    -------
    unique_sensor : :class:`SensorData` object, length M
        Sensor data with duplicate timestamps removed (M <= N)

    """
    x = np.atleast_1d(sensor['timestamp'])
    y = np.atleast_1d(sensor['value'])
    z = np.atleast_1d(sensor['status'])
    # Sort x via mergesort, as it is usually already sorted and stability is important
    sort_ind = np.argsort(x, kind='mergesort')
    x, y = x[sort_ind], y[sort_ind]
    # Array contains True where an x value is unique or the last of a run of identical x values
    last_of_run = np.asarray(list(np.diff(x) != 0) + [True])
    # Discard the False values, as they represent duplicates - simultaneously keep last of each run of duplicates
    unique_ind = last_of_run.nonzero()[0]
    # Determine the index of the x value chosen to represent each original x value (used to pick y values too)
    replacement = unique_ind[len(unique_ind) -
                             np.cumsum(last_of_run[::-1])[::-1]]
    # All duplicates should have the same y and z values - complain otherwise, but continue
    if not np.all(y[replacement] == y) or not np.all(z[replacement] == z):
        logger.debug(
            "Sensor '%s' has duplicate timestamps with different values or statuses"
            % (sensor.name, ))
        for ind in (y[replacement] != y).nonzero()[0]:
            logger.debug(
                "At %s, sensor '%s' has values of %s and %s - keeping last one"
                % (katpoint.Timestamp(
                    x[ind]).local(), sensor.name, y[ind], y[replacement][ind]))
        for ind in (z[replacement] != z).nonzero()[0]:
            logger.debug(
                "At %s, sensor '%s' has statuses of '%s' and '%s' - keeping last one"
                % (katpoint.Timestamp(
                    x[ind]).local(), sensor.name, z[ind], z[replacement][ind]))
    return SensorData(
        np.rec.fromarrays([x[unique_ind], y[unique_ind], z[unique_ind]],
                          dtype=[('timestamp', x.dtype), ('value', y.dtype),
                                 ('status', z.dtype)]), sensor.name)
Esempio n. 3
0
 def test_numerical_timestamp(self):
     """Test numerical properties of timestamps."""
     t = katpoint.Timestamp(self.valid_timestamps[0][0])
     self.assertEqual(t, t + 0.0)
     self.assertNotEqual(t, t + 1.0)
     self.assertTrue(t > t - 1.0)
     self.assertTrue(t < t + 1.0)
     self.assertEqual(t, eval('katpoint.' + repr(t)))
     self.assertEqual(float(t), self.valid_timestamps[0][0])
     t = katpoint.Timestamp(self.valid_timestamps[1][0])
     self.assertAlmostEqual(t.to_ephem_date(),
                            self.valid_timestamps[1][0],
                            places=9)
Esempio n. 4
0
 def test_numerical_timestamp(self):
     """Test numerical properties of timestamps."""
     t = katpoint.Timestamp(self.valid_timestamps[0][0])
     self.assertEqual(t, t + 0.0)
     self.assertNotEqual(t, t + 1.0)
     self.assertTrue(t > t - 1.0)
     self.assertTrue(t < t + 1.0)
     self.assertEqual(t, eval('katpoint.' + repr(t)))
     self.assertEqual(float(t), self.valid_timestamps[0][0])
     t = katpoint.Timestamp(self.valid_timestamps[1][0])
     self.assertAlmostEqual(t.to_ephem_date(), self.valid_timestamps[1][0], places=9)
     try:
         self.assertEqual(hash(t), hash(t + 0.0), 'Timestamp hashes not equal')
     except TypeError:
         self.fail('Timestamp object not hashable')
Esempio n. 5
0
 def test_construct_timestamp(self):
     """Test construction of timestamps."""
     for v, s in self.valid_timestamps:
         t = katpoint.Timestamp(v)
         self.assertEqual(str(t), s, "Timestamp string ('%s') differs from expected one ('%s')" % (str(t), s))
     for v in self.invalid_timestamps:
         self.assertRaises(ValueError, katpoint.Timestamp, v)
Esempio n. 6
0
def set_delay(time_after_now, delay=None):
    t = katpoint.Timestamp() + time_after_now
    if delay is None:
        delay = cable2 - cable1 + tgt.geometric_delay(ant2, t, ant1)[0]
    print delay
    roach.req.poco_delay('0x', int(t.secs) * 1000, '%.9f' % (delay * 1000))
    roach.req.poco_delay('0y', int(t.secs) * 1000, '%.9f' % (delay * 1000))
def plot_flags(timestamps, freqs, flags):
    """timestamps is an array of unix timstamps
    freqs is an array of frequencys in MHz
    flags is a 2D array of boolean with [time,freq]
    it plots the percentage of the data flagged 
    as a function of time vs frequency  """
    fig = plt.figure(figsize=(10, 5))
    #
    print((timestamps[:] - timestamps[0]).shape, (freqs).shape,
          ((flags).T).shape)
    plt.pcolormesh(timestamps[:] - timestamps[0],
                   freqs, (flags).T,
                   rasterized=True)
    plt.title('Flags in "quiet" part of the band')
    plt.xlabel('Time (s), since %s' %
               (katpoint.Timestamp(timestamps[0]).local(), ))
    plt.ylabel('Frequency/[MHz]')
    plt.xlim(0, timestamps[-1] - timestamps[0])
    plt.ylim(freqs[0], freqs[-1])
    plt.figtext(0.89,
                0.11,
                git_info(),
                horizontalalignment='right',
                fontsize=10)
    return fig
Esempio n. 8
0
    def _create_timestamps(self, timestamp_defs, dump_defs):
        """
        Creates observation starting and ending times,
        as well as the dump period, indices and timestamps
        and number of dumps.

        Parameters
        ----------
        timestamp_defs : dict
            Dictionary { 'start_time' : float, 'dump_period' : float}
        dump_defs : list of tuples
            List of (event, number of dumps, target) tuples
        """
        try:
            start_time = timestamp_defs['start_time']
        except KeyError:
            epoch = datetime.utcfromtimestamp(0)
            start_time = (datetime.now() - epoch).total_seconds()

        dump_period = timestamp_defs.get('dump_period', 4.0)

        self._ndumps = ndumps = sum(nd for _, nd, _ in dump_defs)

        # Observation times
        self.start_time = katpoint.Timestamp(start_time)
        self.end_time = self.start_time + dump_period * ndumps
        self.dump_period = dump_period
        self.dumps = np.arange(ndumps)
        self._timestamps = np.arange(self.start_time.secs + (dump_period / 2.),
                                     self.end_time.secs,
                                     step=dump_period,
                                     dtype=np.float64)
Esempio n. 9
0
 def get_lst_range(date):
     date_timestamp = time.mktime(
         date.timetuple())  # this will be local time
     time_range = katpoint.Timestamp(date_timestamp).secs + numpy.arange(
         0, 24.0 * 3600.0, 60)
     lst_range = numpy.degrees(
         target.antenna.local_sidereal_time(time_range)) / 15.0
     return time_range, lst_range
Esempio n. 10
0
 def test_get_scan_area_extents_for_rising_target(self):
     """Test of function get_scan_area_extents with rising target."""
     test_date = katpoint.Timestamp('2010/12/05 20:00:00').to_ephem_date()
     el, az_min, az_max, t_start, t_end = self.get_scan_area_extents(test_date)
     self.assertAlmostEqual(el, 0.39849024)  # In radians
     self.assertAlmostEqual(az_min, 2.06043911)  # In radians
     self.assertAlmostEqual(az_max, 2.25462604)  # In radians
     self.assertEqual(int(t_start.secs), 1291579227)
     self.assertEqual(int(t_end.secs), 1291585208)
Esempio n. 11
0
 def test_get_scan_area_extents_for_setting_target(self):
     """Test of function get_scan_area_extents with setting target."""
     test_date = katpoint.Timestamp('2010/12/05 02:00:00').to_ephem_date()
     el, az_min, az_max, t_start, t_end = self.get_scan_area_extents(test_date)
     self.assertAlmostEqual(el, 0.82988305)  # In radians
     self.assertAlmostEqual(az_min, 3.67187738)  # In radians
     self.assertAlmostEqual(az_max, 4.015025139)  # In radians
     self.assertEqual(int(t_start.secs), 1291514447)
     self.assertEqual(int(t_end.secs), 1291522147)
Esempio n. 12
0
def compscan_key(compscan):
    """List of strings that identifies compound scan."""
    # Name of data set that contains compound scan
    path = compscan.scans[0].path
    filename_end = path.find('.h5')
    dataset_name = os.path.basename(path[:filename_end]) if filename_end > 0 else os.path.basename(path)
    # Time when compound scan is exactly half-way through its operation (i.e. 50% complete)
    middle_time = np.median(np.hstack([scan.timestamps for scan in compscan.scans]), axis=None)
    return compscan.dataset.antenna.name, dataset_name, compscan.target.name, str(katpoint.Timestamp(middle_time))
Esempio n. 13
0
 def setUp(self):
     self.target1 = katpoint.construct_azel_target('45:00:00.0',
                                                   '75:00:00.0')
     self.target2 = katpoint.Target('Sun, special')
     self.ant1 = katpoint.Antenna('A1, -31.0, 18.0, 0.0, 12.0, 0.0 0.0 0.0')
     self.ant2 = katpoint.Antenna(
         'A2, -31.0, 18.0, 0.0, 12.0, 10.0 -10.0 0.0')
     self.ant3 = katpoint.Antenna(
         'A3, -31.0, 18.0, 0.0, 12.0, 5.0 10.0 3.0')
     self.ts = katpoint.Timestamp('2013-08-14 08:25')
     self.delays = katpoint.DelayCorrection([self.ant2, self.ant3],
                                            self.ant1, 1.285e9)
def get_power_array(data, name, pol):
    url = "http://portal.mkat.karoo.kat.ac.za/katstore/samples"  # this is for live data
    #url='http://kat-flap-cpt.mkat.control.kat.ac.za/katstore/samples' # flap in CT for older values
    start = katpoint.Timestamp(np.str(data.start_time))
    end = katpoint.Timestamp(np.str(data.end_time))
    #print start, end
    params = {
        'sensor': '%s_dig_l_band_adc_%spol_rf_power_in' %
        (name, pol),  # name of the sensor.
        'start': start.secs,  # start time in seconds - float should work.
        'end': end.secs,  # end time in seconds
        'time_type': 's'
    }  # Specify that we work in seconds.
    res = requests.get(url, params)  # Make the call.
    res.json(
    )  # Data comes back as JSON with the correct mime type set so Requests can convert for you.
    #data_dict = {r[0]: float(r[3]) for r in res.json()} # E.g. Making dict from the response. You'll prob do something different here.
    data_temp_list = [
        float(r[3]) for r in res.json()
    ]  # E.g. Making list from the response. You'll prob do something different here.
    return np.array(data_temp_list)
Esempio n. 15
0
 def test_operators(self):
     """Test operators defined for timestamps."""
     T = katpoint.Timestamp(self.valid_timestamps[0][0])
     S = T.secs
     # Logical operators, float treated as absolute time
     self.assertTrue(T == S)
     self.assertTrue(T < S+1)
     self.assertTrue(T > S-1)
     # Arithmetic operators, float treated as interval
     self.assertTrue(isinstance(T - S, katpoint.Timestamp))
     self.assertTrue(isinstance(S - T, float))
     self.assertTrue(isinstance(T - T, float))
Esempio n. 16
0
    def test_time_conversion_symmetry(self):
        """Test katpoint and astrokat time conversion methods match and are symmetrical"""
        test_files = [
            "test_obs/below-horizon-sim.yaml",
            "test_obs/image-cals-sim.yaml",
            "test_obs/image-sim.yaml",
            "test_obs/image-single-sim.yaml",
            "test_obs/targets-sim.yaml",
            "test_obs/two-calib-sim.yaml",
        ]
        for test_file in test_files:
            file_path = yaml_path(test_file)
            yaml_start_time = extract_start_time(file_path)
            yaml_start_time_str = str(yaml_start_time)

            astrokat_sec_since_epoch = utility.datetime2timestamp(
                yaml_start_time)
            katpoint_sec_since_epoch = katpoint.Timestamp(
                yaml_start_time_str).secs
            self.assertAlmostEqual(
                astrokat_sec_since_epoch,
                katpoint_sec_since_epoch,
                places=6,
                msg="timestamp conversion mismatch {}".format(test_file))

            astrokat_datetime = utility.timestamp2datetime(
                astrokat_sec_since_epoch)
            katpoint_timestamp = katpoint.Timestamp(katpoint_sec_since_epoch)
            self.assertEqual(
                str(astrokat_datetime),
                yaml_start_time_str,
                msg="astrokat str time conversion mismatch for {}".format(
                    test_file))
            self.assertEqual(
                str(katpoint_timestamp),
                yaml_start_time_str,
                msg="katpoint str time conversion mismatch for {}".format(
                    test_file))
Esempio n. 17
0
def phase_plot(phasedata, baseline_names, num_chans, scan_timestamps, num_bls):
    """phasedata is an array consiting of phase information for all correlation products,
    num_chans is the number of channels"""
    x1, x2 = scan_timestamps[0][0], scan_timestamps[-1][-1]
    scan_freqinds = [np.arange(num_bls * num_chans)] * len(scan_timestamps)
    y1, y2 = scan_freqinds[0][0] - 0.5, scan_freqinds[0][-1] + 0.5

    #num_bls = len(baseline_names)
    if num_bls > 0:
        fig2 = plt.figure(0, figsize=(12, num_bls), tight_layout=True)
    else:
        fig2 = plt.figure(0, figsize=(12, 1), tight_layout=True)
    #Put plots side-by-side if there are <10 scans.
    p = 0
    for p, active_pol in enumerate(['H', 'V']):
        if len(scan_timestamps) < 10:
            plt.subplot(1, 2, p + 1)
        else:
            plt.subplot(2, 1, p + 1)

        plt.imshow(phasedata[active_pol]
                   [~np.all(np.isnan(phasedata[active_pol]), axis=1)],
                   aspect='auto',
                   origin='lower',
                   extent=[x1, x2, y1, y2],
                   interpolation='nearest',
                   rasterized=True)
        plt.xlabel('Time (s), since %s' %
                   (katpoint.Timestamp(data.start_time).local(), ))
        if p == 1 and len(scan_timestamps) < 10:
            plt.yticks(
                np.arange(num_chans // 2, num_bls * num_chans, num_chans),
                np.repeat('', num_bls))
        else:
            plt.yticks(
                np.arange(num_chans // 2, num_bls * num_chans, num_chans),
                baseline_names)
        for yval in range(0, num_bls * num_chans, num_chans):
            plt.axhline(yval, color='k', lw=2)
        plt.title('Raw visibility phase per baseline, Pol %s' % active_pol)
    return fig2
Esempio n. 18
0
        # Get the average dump time for this scan (equal to scan length if the dump period is longer than a scan)
        dump_time_width = min(time_av, scan_len * h5.dump_period)

        scan_size_mb = 0.0
        # Get UTC timestamps
        utc_seconds = h5.timestamps[:]
        # Update field lists if this is a new target
        if target.name not in field_names:
            # Since this will be an 'radec' target, we don't need antenna or timestamp to get the (astrometric) ra, dec
            ra, dec = target.radec()

            field_names.append(target.name)
            field_centers.append((ra, dec))
            field_times.append(
                katpoint.Timestamp(utc_seconds[0]).to_mjd() * 60 * 60 * 24)
            if options.verbose:
                print "Added new field %d: '%s' %s %s" % (len(field_names) - 1,
                                                          target.name, ra, dec)
        field_id = field_names.index(target.name)

        # Determine the observation tag for this scan
        obs_tag = []
        for tag in target.tags:
            if tag in tag_to_intent:
                obs_tag.append(tag_to_intent[tag])
        obs_tag = ','.join(obs_tag)
        # add tag to obs_modes list
        if obs_tag and obs_tag not in obs_modes:
            obs_modes.append(obs_tag)
        # get state_id from obs_modes list if it is in the list, else 0 'UNKNOWN'
Esempio n. 19
0
            def onselect_next(eclick,erelease):
                global output_data, output_chan, output_ts
                xmin = min(eclick.xdata, erelease.xdata)
                xmax = max(eclick.xdata, erelease.xdata)
                ymin = min(eclick.ydata, erelease.ydata)
                ymax = max(eclick.ydata, erelease.ydata)

                ind = (FF >= xmin) & (FF <= xmax)  & (PP >= ymin) & (PP <= ymax)
                selected_freq = FF[ind]
                selected_amp = 10.0*np.log10(PP[ind])
                selected_ts = TT[ind]
                selected_az = AA[ind]
                selected_el = EE[ind]
                print "SUCCESSFUL, CLICK AND DRAG TO SELECT THE NEXT RFI CHANNELS OR NEXT TO LOAD NEW DATASET"

                #sorting with increasng X_new
                indices = np.lexsort(keys = (selected_ts, selected_freq))

                for index in indices:
                    output_data.append([out_filename, selected_freq[index],selected_ts[index], katpoint.Timestamp(selected_ts[index]).local(), selected_az[index], selected_el[index], selected_amp[index]])
                for point in output_data:
                    output_chan.append(point[1])
                    output_ts.append(point[2])
                    output_az.append(point[4])
                    output_el.append(point[5])
Esempio n. 20
0
                    % (', '.join(nd_cycles), ', '.join(bf_ants)))
            #tell dspsr to expect cal data
            if float(cycle_length) > 0:
                period = float(cycle_length)
                freq = 1.0 / period
                print "kat.ptuse_1.req.ptuse_cal_freq (" + data_product_id + ", " + beam_id + ", " + str(
                    freq) + ")"
                reply = kat.ptuse_1.req.ptuse_cal_freq(data_product_id,
                                                       beam_id, freq)
                print "kat.ptuse_1.req.ptuse_cal_freq returned " + str(reply)

        # Temporary haxx to make sure that AP accepts the upcoming track request
        time.sleep(2)

        if opts.cal == 'flux':
            timenow = katpoint.Timestamp()

            sources = katpoint.Catalogue(add_specials=False)
            user_logger.info('Performing flux calibration')
            ra, dec = target.apparent_radec(timestamp=timenow)
            targetName = target.name.replace(" ", "")
            print targetName
            target.name = targetName + '_O'
            sources.add(target)

        if opts.cal == 'fluxN':
            timenow = katpoint.Timestamp()

            sources = katpoint.Catalogue(add_specials=False)
            user_logger.info('Performing flux calibration')
            ra, dec = target.apparent_radec(timestamp=timenow)
Esempio n. 21
0
    '--no-delays',
    action="store_true",
    default=True,
    help='Do not use delay tracking, and zero delays (default="%default")')

# Set default value for any option (both standard and experiment-specific options)
parser.set_defaults(description='Tipping Curve')
# Parse the command line
opts, args = parser.parse_args()
on_time = 15.0
with verify_and_connect(opts) as kat:
    # Ensure that azimuth is in valid physical range of -185 to 275 degrees
    if opts.az is None:
        user_logger.info("No Azimuth selected , selecting clear Azimith")
        timestamp = [
            katpoint.Timestamp(time.time() + 1) for i in range(
                int((np.arange(10.0, 90.1, opts.spacing).shape[0] *
                     (on_time + 20.0 + 1.0))))
        ]
        #load the standard KAT sources ... similar to the SkyPlot of the katgui
        observation_sources = kat.sources
        source_az = []
        for source in observation_sources.targets:
            az, el = np.degrees(
                source.azel(timestamp=timestamp))  # was rad2deg
            az[az > 180] = az[az > 180] - 360
            source_az += list(set(az[el > 5]))
        source_az.sort()
        gap = np.diff(source_az).argmax() + 1
        opts.az = (source_az[gap] + source_az[gap + 1]) / 2.0
        user_logger.info("Selecting Satillite clear Azimuth=%f" % (opts.az, ))
Esempio n. 22
0
def ms_writer_process(work_queue, result_queue, options, antennas, cp_info,
                      ms_name, raw_vis_data, raw_weight_data, raw_flag_data):
    """
    Function to be run in a separate process for writing to a Measurement Set.
    The MS is assumed to have already been created with the appropriate
    columns.

    Incoming work is provided by submitting instances of :class:`QueueItem`
    to `work_queue`. The `slot` indexes the first dimension of the shared
    memory arrays. One may also submit an :class:`EndOfScan`, which will flush
    to disk and return a :class:`ScanResult` through the `result_queue` (these
    are not actually required to match katdal scans).

    To terminate the process, submit ``None`` to `work_queue`.

    If an exception occurs, it will be placed into `result_queue`, after which
    work_queue items will be fetched and discarded until ``None`` is received.
    When finished (either successfully or after an error), ``None`` is put in
    `result_queue`.

    Parameters
    ----------
    work_queue : :class:`multiprocessing.Queue`
        Incoming work. Note that this function gives no explicit indication
        when it is done with a piece of work, so the queue capacity needs to
        be bounded to prevent data races.
    result_queue : :class:`multiprocessing.Queue`
        Information about progress (see :class:`ScanResult`)
    options : :class:`argparse.Namespace`
        Command-line options to mvftoms
    antennas : list of :class:`katpoint.Antenna`
        Antennas (used to compute UVW coordinates)
    cp_info : namedtuple
        Correlation product info (see mvftoms.py)
    ms_name : str
        Name of the Measurement Set to write
    raw_vis_data, raw_weight_data, raw_flag_data : :class:`RawArray`
        Circular buffers for the data, with shape
        (slots, time, baseline, channel, pol).
    """

    none_seen = False
    try:
        vis_arrays = raw_vis_data.asarray()
        weight_arrays = raw_weight_data.asarray()
        flag_arrays = raw_flag_data.asarray()
        scan_size = 0
        tdiff = vis_arrays.shape[1]
        nbl = vis_arrays.shape[2]

        main_table = ms_extra.open_main(ms_name, verbose=options.verbose)
        with contextlib.closing(main_table):
            array_centre = katpoint.Antenna('',
                                            *antennas[0].ref_position_wgs84)
            baseline_vectors = np.array([
                array_centre.baseline_toward(antenna) for antenna in antennas
            ])

            while True:
                item = work_queue.get()
                if item is None:
                    none_seen = True
                    break
                elif isinstance(item, EndOfScan):
                    main_table.flush(
                    )  # Mostly to get realistic throughput stats
                    result_queue.put(ScanResult(scan_size))
                    scan_size = 0
                else:
                    # Extract the slot, and flatten time and baseline into a single axis
                    new_shape = (-1, vis_arrays.shape[-2],
                                 vis_arrays.shape[-1])
                    vis_data = vis_arrays[item.slot].reshape(new_shape)
                    weight_data = weight_arrays[item.slot].reshape(new_shape)
                    flag_data = flag_arrays[item.slot].reshape(new_shape)

                    # Iterate through baselines, computing UVW coordinates
                    # for a chunk of timesteps
                    uvw_basis = item.target.uvw_basis(item.time_utc,
                                                      array_centre)
                    # Axes in uvw_ant are antenna, axis (u/v/w), and time
                    uvw_ant = np.tensordot(baseline_vectors, uvw_basis,
                                           ([1], [1]))
                    # Permute to time, antenna, axis
                    uvw_ant = np.transpose(uvw_ant, (2, 0, 1))
                    # Compute baseline UVW coordinates from per-antenna coordinates.
                    # The sign convention matches `CASA`_, rather than the
                    # Measurement Set `definition`_.
                    # .. _CASA: https://casa.nrao.edu/Memos/CoordConvention.pdf
                    # .. _definition: https://casa.nrao.edu/Memos/229.html#SECTION00064000000000000000
                    uvw_coordinates = (
                        np.take(uvw_ant, cp_info.ant1_index, axis=1) -
                        np.take(uvw_ant, cp_info.ant2_index, axis=1))
                    # Flatten time and baseline axes together
                    uvw_coordinates = uvw_coordinates.reshape(-1, 3)

                    # Convert averaged UTC timestamps to MJD seconds.
                    # Blow time up to (ntime*nbl,)
                    out_mjd = np.asarray([
                        katpoint.Timestamp(t).to_mjd() * 24 * 60 * 60
                        for t in item.time_utc
                    ])

                    out_mjd = np.broadcast_to(out_mjd[:, np.newaxis],
                                              (tdiff, nbl)).ravel()

                    # Repeat antenna indices to (ntime*nbl,)
                    a1 = np.broadcast_to(cp_info.ant1_index[np.newaxis, :],
                                         (tdiff, nbl)).ravel()
                    a2 = np.broadcast_to(cp_info.ant2_index[np.newaxis, :],
                                         (tdiff, nbl)).ravel()

                    # Blow field ID up to (ntime*nbl,)
                    big_field_id = np.full((tdiff * nbl, ),
                                           item.field_id,
                                           dtype=np.int32)
                    big_state_id = np.full((tdiff * nbl, ),
                                           item.state_id,
                                           dtype=np.int32)
                    big_scan_itr = np.full((tdiff * nbl, ),
                                           item.scan_itr,
                                           dtype=np.int32)

                    # Setup model_data and corrected_data if required
                    model_data = None
                    corrected_data = None

                    if options.model_data:
                        # unity intensity zero phase model data set, same shape as vis_data
                        model_data = np.ones(vis_data.shape,
                                             dtype=np.complex64)
                        # corrected data set copied from vis_data
                        corrected_data = vis_data

                    # Populate dictionary for write to MS
                    main_dict = ms_extra.populate_main_dict(
                        uvw_coordinates, vis_data, flag_data, out_mjd, a1, a2,
                        item.dump_time_width, big_field_id, big_state_id,
                        big_scan_itr, model_data, corrected_data)

                    # Write data to MS.
                    ms_extra.write_rows(main_table,
                                        main_dict,
                                        verbose=options.verbose)

                    # Calculate bytes written from the summed arrays in the dict
                    scan_size += sum(a.nbytes for a in main_dict.itervalues()
                                     if isinstance(a, np.ndarray))
    except Exception as error:
        result_queue.put(error)
        while not none_seen:
            item = work_queue.get()
            if item is None:
                none_seen = True
    finally:
        result_queue.put(None)
Esempio n. 23
0
    def __init__(self,
                 filename,
                 ref_ant='',
                 time_offset=0.0,
                 mode='r',
                 quicklook=False,
                 keepdims=False,
                 **kwargs):
        DataSet.__init__(self, filename, ref_ant, time_offset)

        # Load file
        self.file, self.version = H5DataV2._open(filename, mode)
        f = self.file

        # Load main HDF5 groups
        data_group, sensors_group, config_group = f['Data'], f[
            'MetaData/Sensors'], f['MetaData/Configuration']
        markup_group = f['Markup']
        # Get observation script parameters, with defaults
        for k, v in config_group['Observation'].attrs.iteritems():
            # For KAT-7 (v2.1) data, strip the 'script_' prefix from most parameters
            k = k if self.version > '2.1' or k in (
                'script_name', 'script_arguments') else k[7:]
            self.obs_params[str(k)] = v
        self.observer = self.obs_params.get('observer', '')
        self.description = self.obs_params.get('description', '')
        self.experiment_id = self.obs_params.get('experiment_id', '')
        # Get script log from History group
        self.obs_script_log = f['History/script_log'].value['log'].tolist()

        # ------ Extract timestamps ------

        self.dump_period = get_single_value(config_group['Correlator'],
                                            'int_time')
        # Obtain visibility data and timestamps
        self._vis = data_group['correlator_data']
        self._timestamps = data_group['timestamps']
        num_dumps = len(self._timestamps)
        if num_dumps != self._vis.shape[0]:
            raise BrokenFile('Number of timestamps received from k7_capture '
                             '(%d) differs from number of dumps in data (%d)' %
                             (num_dumps, self._vis.shape[0]))
        # Discard the last sample if the timestamp is a duplicate (caused by stop packet in k7_capture)
        num_dumps = (num_dumps - 1) if num_dumps > 1 and (
            self._timestamps[-1] == self._timestamps[-2]) else num_dumps
        # Do quick test for uniform spacing of timestamps (necessary but not sufficient)
        expected_dumps = (self._timestamps[num_dumps - 1] -
                          self._timestamps[0]) / self.dump_period + 1
        # The expected_dumps should always be an integer (like num_dumps), unless the timestamps and/or dump period
        # are messed up in the file, so the threshold of this test is a bit arbitrary (e.g. could use > 0.5)
        irregular = abs(expected_dumps - num_dumps) >= 0.01
        if irregular:
            # Warn the user, as this is anomalous
            logger.warning((
                "Irregular timestamps detected in file '%s': "
                "expected %.3f dumps based on dump period and start/end times, got %d instead"
            ) % (filename, expected_dumps, num_dumps))
            if quicklook:
                logger.warning(
                    "Quicklook option selected - partitioning data based on synthesised timestamps instead"
                )
        if not irregular or quicklook:
            # Estimate timestamps by assuming they are uniformly spaced (much quicker than loading them from file).
            # This is useful for the purpose of segmenting data set, where accurate timestamps are not that crucial.
            # The real timestamps are still loaded when the user explicitly asks for them.
            data_timestamps = self._timestamps[
                0] + self.dump_period * np.arange(num_dumps)
        else:
            # Load the real timestamps instead (could take several seconds on a large data set)
            data_timestamps = self._timestamps[:num_dumps]
        # Move timestamps from start of each dump to the middle of the dump
        data_timestamps += 0.5 * self.dump_period + self.time_offset
        if data_timestamps[0] < 1e9:
            logger.warning(
                "File '%s' has invalid first correlator timestamp (%f)" % (
                    filename,
                    data_timestamps[0],
                ))
        self._time_keep = np.ones(num_dumps, dtype=np.bool)
        self.start_time = katpoint.Timestamp(data_timestamps[0] -
                                             0.5 * self.dump_period)
        self.end_time = katpoint.Timestamp(data_timestamps[-1] +
                                           0.5 * self.dump_period)
        self._keepdims = keepdims

        # ------ Extract flags ------

        # Check if flag group is present, else use dummy flag data
        self._flags = markup_group['flags'] if 'flags' in markup_group else \
            dummy_dataset('dummy_flags', shape=self._vis.shape[:-1], dtype=np.uint8, value=0)
        # Obtain flag descriptions from file or recreate default flag description table
        self._flags_description = markup_group['flags_description'] if 'flags_description' in markup_group else \
            np.array(zip(FLAG_NAMES, FLAG_DESCRIPTIONS))
        self._flags_select = np.array([0], dtype=np.uint8)
        self._flags_keep = 'all'

        # ------ Extract weights ------

        # Check if weight group present, else use dummy weight data
        self._weights = markup_group['weights'] if 'weights' in markup_group else \
            dummy_dataset('dummy_weights', shape=self._vis.shape[:-1], dtype=np.float32, value=1.0)
        # Obtain weight descriptions from file or recreate default weight description table
        self._weights_description = markup_group['weights_description'] if 'weights_description' in markup_group else \
            np.array(zip(WEIGHT_NAMES, WEIGHT_DESCRIPTIONS))
        self._weights_select = []
        self._weights_keep = 'all'

        # ------ Extract sensors ------

        # Populate sensor cache with all HDF5 datasets below sensor group that fit the description of a sensor
        cache = {}

        def register_sensor(name, obj):
            """A sensor is defined as a non-empty dataset with expected dtype."""
            if isinstance(obj, h5py.Dataset) and obj.shape != () and \
               obj.dtype.names == ('timestamp', 'value', 'status'):
                # Rename pedestal sensors from the old regime to become sensors of the corresponding antenna
                name = (
                    'Antennas/ant' +
                    name[13:]) if name.startswith('Pedestals/ped') else name
                cache[name] = RecordSensorData(obj, name)

        sensors_group.visititems(register_sensor)
        # Use estimated data timestamps for now, to speed up data segmentation
        self.sensor = SensorCache(cache,
                                  data_timestamps,
                                  self.dump_period,
                                  keep=self._time_keep,
                                  props=SENSOR_PROPS,
                                  virtual=VIRTUAL_SENSORS,
                                  aliases=SENSOR_ALIASES)

        # ------ Extract subarrays ------

        # By default, only pick antennas that were in use by the script
        script_ants = config_group['Observation'].attrs['script_ants'].split(
            ',')
        self.ref_ant = script_ants[0] if not ref_ant else ref_ant
        # Original list of correlation products as pairs of input labels
        corrprods = get_single_value(config_group['Correlator'],
                                     'bls_ordering')
        if len(corrprods) != self._vis.shape[2]:
            # Apply k7_capture baseline mask after the fact, in the hope that it fixes correlation product mislabelling
            corrprods = np.array([
                cp for cp in corrprods
                if cp[0][:-1] in script_ants and cp[1][:-1] in script_ants
            ])
            # If there is still a mismatch between labels and data shape, file is considered broken (maybe bad labels?)
            if len(corrprods) != self._vis.shape[2]:
                raise BrokenFile(
                    'Number of baseline labels (containing expected antenna names) '
                    'received from correlator (%d) differs from number of baselines in data (%d)'
                    % (len(corrprods), self._vis.shape[2]))
            else:
                logger.warning(
                    'Reapplied k7_capture baseline mask to fix unexpected number of baseline labels'
                )
        # All antennas in configuration as katpoint Antenna objects
        ants = [
            katpoint.Antenna(
                config_group['Antennas'][name].attrs['description'])
            for name in config_group['Antennas']
        ]
        self.subarrays = [Subarray(ants, corrprods)]
        self.sensor['Observation/subarray'] = CategoricalData(
            self.subarrays, [0, len(data_timestamps)])
        self.sensor['Observation/subarray_index'] = CategoricalData(
            [0], [0, len(data_timestamps)])
        # Store antenna objects in sensor cache too, for use in virtual sensor calculations
        for ant in ants:
            self.sensor['Antennas/%s/antenna' %
                        (ant.name, )] = CategoricalData(
                            [ant], [0, len(data_timestamps)])

        # ------ Extract spectral windows / frequencies ------

        # Ideally we would like to use calculated center-frequency-hz sensor produced by k7_capture (better for nband)
        if self.version >= '2.1':
            centre_freq = self.sensor.get('RFE/center-frequency-hz')
        else:
            # Fall back to basic RFE7 LO frequency, as this supported multiple spectral windows before k7_capture did
            # This assumes WBC mode, though (NBC modes only fully supported since HDF5 v2.1)
            centre_freq = self.sensor.get('RFE/rfe7.lo1.frequency')
            centre_freq.unique_values = [
                freq - 4200e6 for freq in centre_freq.unique_values
            ]
        num_chans = get_single_value(config_group['Correlator'], 'n_chans')
        if num_chans != self._vis.shape[1]:
            raise BrokenFile(
                'Number of channels received from correlator '
                '(%d) differs from number of channels in data (%d)' %
                (num_chans, self._vis.shape[1]))
        bandwidth = get_single_value(config_group['Correlator'], 'bandwidth')
        channel_width = bandwidth / num_chans
        try:
            mode = self.sensor.get('DBE/dbe.mode').unique_values[0]
        except (KeyError, IndexError):
            # Guess the mode for version 2.0 files that haven't been re-augmented
            mode = 'wbc' if num_chans <= 1024 else 'wbc8k' if bandwidth > 200e6 else 'nbc'
        self.spectral_windows = [
            SpectralWindow(spw_centre, channel_width, num_chans, mode)
            for spw_centre in centre_freq.unique_values
        ]
        self.sensor['Observation/spw'] = CategoricalData(
            [self.spectral_windows[idx] for idx in centre_freq.indices],
            centre_freq.events)
        self.sensor['Observation/spw_index'] = CategoricalData(
            centre_freq.indices, centre_freq.events)

        # ------ Extract scans / compound scans / targets ------

        # Use the activity sensor of reference antenna to partition the data set into scans (and to set their states)
        scan = self.sensor.get('Antennas/%s/activity' % (self.ref_ant, ))
        # If the antenna starts slewing on the second dump, incorporate the first dump into the slew too.
        # This scenario typically occurs when the first target is only set after the first dump is received.
        # The workaround avoids putting the first dump in a scan by itself, typically with an irrelevant target.
        if len(scan) > 1 and scan.events[1] == 1 and scan[1] == 'slew':
            scan.events, scan.indices = scan.events[1:], scan.indices[1:]
            scan.events[0] = 0
        # Use labels to partition the data set into compound scans
        label = sensor_to_categorical(markup_group['labels']['timestamp'],
                                      markup_group['labels']['label'],
                                      data_timestamps, self.dump_period,
                                      **SENSOR_PROPS['Observation/label'])
        # Discard empty labels (typically found in raster scans, where first scan has proper label and rest are empty)
        # However, if all labels are empty, keep them, otherwise whole data set will be one pathological compscan...
        if len(label.unique_values) > 1:
            label.remove('')
        # Create duplicate scan events where labels are set during a scan (i.e. not at start of scan)
        # ASSUMPTION: Number of scans >= number of labels (i.e. each label should introduce a new scan)
        scan.add_unmatched(label.events)
        self.sensor['Observation/scan_state'] = scan
        self.sensor['Observation/scan_index'] = CategoricalData(
            range(len(scan)), scan.events)
        # Move proper label events onto the nearest scan start
        # ASSUMPTION: Number of labels <= number of scans (i.e. only a single label allowed per scan)
        label.align(scan.events)
        # If one or more scans at start of data set have no corresponding label, add a default label for them
        if label.events[0] > 0:
            label.add(0, '')
        self.sensor['Observation/label'] = label
        self.sensor['Observation/compscan_index'] = CategoricalData(
            range(len(label)), label.events)
        # Use the target sensor of reference antenna to set the target for each scan
        target = self.sensor.get('Antennas/%s/target' % (self.ref_ant, ))
        # Move target events onto the nearest scan start
        # ASSUMPTION: Number of targets <= number of scans (i.e. only a single target allowed per scan)
        target.align(scan.events)
        self.sensor['Observation/target'] = target
        self.sensor['Observation/target_index'] = CategoricalData(
            target.indices, target.events)
        # Set up catalogue containing all targets in file, with reference antenna as default antenna
        self.catalogue.add(target.unique_values)
        self.catalogue.antenna = self.sensor['Antennas/%s/antenna' %
                                             (self.ref_ant, )][0]
        # Ensure that each target flux model spans all frequencies in data set if possible
        self._fix_flux_freq_range()

        # Avoid storing reference to self in transform closure below, as this hinders garbage collection
        dump_period, time_offset = self.dump_period, self.time_offset
        # Restore original (slow) timestamps so that subsequent sensors (e.g. pointing) will have accurate values
        extract_time = LazyTransform(
            'extract_time',
            lambda t, keep: t + 0.5 * dump_period + time_offset)
        self.sensor.timestamps = LazyIndexer(self._timestamps,
                                             keep=slice(num_dumps),
                                             transforms=[extract_time])
        # Apply default selection and initialise all members that depend on selection in the process
        self.select(spw=0, subarray=0, ants=script_ants)
def reduce_compscan_inf(h5,
                        channel_mask=None,
                        chunks=16,
                        return_raw=False,
                        use_weights=False,
                        compscan_index=None,
                        debug=False):
    """Break the band up into chunks"""
    chunk_size = chunks
    rfi_static_flags = np.tile(False, h5.shape[0])
    if len(channel_mask) > 0:
        pickle_file = open(channel_mask, "rb")
        rfi_static_flags = pickle.load(pickle_file)
        pickle_file.close()
    gains_p = {}
    stdv = {}
    calibrated = False  # placeholder for calibration
    h5.select(compscans=compscan_index)
    a = []
    if len(h5.target_indices) > 1:
        print("Warning multiple targets in the compscan")
    for scan in h5.scans():
        a.append(h5.target_indices[0])
    target = h5.catalogue.targets[np.median(a).astype(
        np.int)]  # Majority Track
    compscan_index = h5.compscan_indices[0]
    #h5.select(targets=target,compscans=h5.compscan_indices[0]) # Majority Track in compscan
    if not return_raw:  # Calculate average target flux over entire band
        flux_spectrum = h5.catalogue.targets[
            h5.target_indices[0]].flux_density(h5.freqs)  # include flags
        average_flux = np.mean(
            [flux for flux in flux_spectrum if not np.isnan(flux)])
        temperature = np.mean(h5.temperature)
        pressure = np.mean(h5.pressure)
        humidity = np.mean(h5.humidity)
        wind_speed = np.mean(h5.wind_speed)
        wind_direction = np.degrees(
            np.angle(np.mean(np.exp(
                1j * np.radians(h5.wind_direction)))))  # Vector Mean
        sun = katpoint.Target('Sun, special')
        # Calculate pointing offset
        # Obtain middle timestamp of compound scan, where all pointing calculations are done
        middle_time = np.median(h5.timestamps[:], axis=None)
        # Start with requested (az, el) coordinates, as they apply at the middle time for a moving target
        requested_azel = target.azel(middle_time)
        # Correct for refraction, which becomes the requested value at input of pointing model
        rc = katpoint.RefractionCorrection()
        requested_azel = [
            requested_azel[0],
            rc.apply(requested_azel[1], temperature, pressure, humidity)
        ]
        requested_azel = katpoint.rad2deg(np.array(requested_azel))

    gaussian_centre = np.zeros((chunk_size * 2, 2, len(h5.ants)))
    gaussian_centre_std = np.zeros((chunk_size * 2, 2, len(h5.ants)))
    gaussian_width = np.zeros((chunk_size * 2, 2, len(h5.ants)))
    gaussian_width_std = np.zeros((chunk_size * 2, 2, len(h5.ants)))
    gaussian_height = np.zeros((chunk_size * 2, len(h5.ants)))
    gaussian_height_std = np.zeros((chunk_size * 2, len(h5.ants)))
    if debug:  #debug_text
        debug_text = []
        line = []
        line.append("#AntennaPol")
        line.append("Target")
        line.append("Freq(MHz)")  #MHz
        line.append("Centre Az")
        line.append("Centre El")
        line.append("Centre Az Std")
        line.append("Centre El Std")
        line.append("Centre Az Width")
        line.append("Centre El Width")
        line.append("Centre Az Width Std")
        line.append("Centre El Width Std")
        line.append("Height")
        line.append("Height Std")
        debug_text.append(','.join(line))
    pols = ["H", "V"]  # Put in logic for Intensity
    for i, pol in enumerate(pols):
        gains_p[pol] = []
        pos = []
        stdv[pol] = []
        h5.select(pol=pol,
                  corrprods='cross',
                  ants=h5.antlist,
                  targets=target,
                  compscans=compscan_index)
        h5.bls_lookup = calprocs.get_bls_lookup(h5.antlist, h5.corr_products)
        for scan in h5.scans():
            if scan[1] != 'track': continue
            valid_index = activity(h5, state='track')
            data = h5.vis[valid_index]
            if data.shape[0] > 0:  # need at least one data point
                #g0 = np.ones(len(h5.ants),np.complex)
                if use_weights:
                    weights = h5.weights[valid_index].mean(axis=0)
                else:
                    weights = np.ones(data.shape[1:]).astype(np.float)
                gains_p[pol].append(
                    calprocs.g_fit(data[:].mean(axis=0),
                                   weights,
                                   h5.bls_lookup,
                                   refant=0))
                stdv[pol].append(
                    np.ones(
                        (data.shape[0], data.shape[1],
                         len(h5.ants))).sum(axis=0))  #number of data points
                # Get coords in (x(time,ants),y(time,ants) coords)
                pos.append([
                    h5.target_x[valid_index, :].mean(axis=0),
                    h5.target_y[valid_index, :].mean(axis=0)
                ])
        for ant in range(len(h5.ants)):
            for chunk in range(chunks):
                if np.array(pos).shape[
                        0] > 4:  # Make sure there is enough data for a fit
                    freq = slice(chunk * (h5.shape[1] // chunks),
                                 (chunk + 1) * (h5.shape[1] // chunks))
                    rfi = ~rfi_static_flags[freq]
                    fitobj = fit.GaussianFit(
                        np.array(pos)[:, :, ant].mean(axis=0), [1., 1.], 1)
                    x = np.column_stack(
                        (np.array(pos)[:, 0, ant], np.array(pos)[:, 1, ant]))
                    y = np.abs(
                        np.array(gains_p[pol])[:, freq, :][:, rfi,
                                                           ant]).mean(axis=1)
                    y_err = 1. / np.sqrt(
                        np.array(stdv[pol])[:, freq, :][:, rfi,
                                                        ant].sum(axis=1))
                    gaussian = fitobj.fit(x.T, y, y_err)
                    #Fitted beam center is in (x, y) coordinates, in projection centred on target
                    snr = np.abs(np.r_[gaussian.std / gaussian.std_std])
                    valid_fit = np.all(
                        np.isfinite(np.r_[gaussian.mean, gaussian.std_mean,
                                          gaussian.std, gaussian.std_std,
                                          gaussian.height, gaussian.std_height,
                                          snr]))
                    theta = np.sqrt((gaussian.mean**2).sum(
                    ))  # this is to see if the co-ord is out of range
                    #The valid fit is needed because I have no way of working out if the gain solution was ok.
                    if not valid_fit or np.any(
                            theta > np.pi
                    ):  # the checks to see if the fit is ok
                        gaussian_centre[chunk + i * chunk_size, :,
                                        ant] = np.nan
                        gaussian_centre_std[chunk + i * chunk_size, :,
                                            ant] = np.nan
                        gaussian_width[chunk + i * chunk_size, :, ant] = np.nan
                        gaussian_width_std[chunk + i * chunk_size, :,
                                           ant] = np.nan
                        gaussian_height[chunk + i * chunk_size, ant] = np.nan
                        gaussian_height_std[chunk + i * chunk_size,
                                            ant] = np.nan
                    else:
                        # Convert this offset back to spherical (az, el) coordinates
                        beam_center_azel = target.plane_to_sphere(
                            np.radians(gaussian.mean[0]),
                            np.radians(gaussian.mean[1]), middle_time)
                        # Now correct the measured (az, el) for refraction and then apply the old pointing model
                        # to get a "raw" measured (az, el) at the output of the pointing model
                        beam_center_azel = [
                            beam_center_azel[0],
                            rc.apply(beam_center_azel[1], temperature,
                                     pressure, humidity)
                        ]
                        beam_center_azel = h5.ants[ant].pointing_model.apply(
                            *beam_center_azel)
                        beam_center_azel = np.degrees(
                            np.array(beam_center_azel))
                        gaussian_centre[chunk + i * chunk_size, :,
                                        ant] = beam_center_azel
                        gaussian_centre_std[chunk + i * chunk_size, :,
                                            ant] = gaussian.std_mean
                        gaussian_width[chunk + i * chunk_size, :,
                                       ant] = gaussian.std
                        gaussian_width_std[chunk + i * chunk_size, :,
                                           ant] = gaussian.std_std
                        gaussian_height[chunk + i * chunk_size,
                                        ant] = gaussian.height
                        gaussian_height_std[chunk + i * chunk_size,
                                            ant] = gaussian.std_height

    if return_raw:
        return np.r_[gaussian_centre, gaussian_centre_std, gaussian_width,
                     gaussian_width_std, gaussian_height, gaussian_height_std]
    else:
        ant_pointing = {}
        pols = ["HH", "VV", 'I']
        pol_ind = {}
        pol_ind['HH'] = np.arange(0.0 * chunk_size,
                                  1.0 * chunk_size,
                                  dtype=int)
        pol_ind['VV'] = np.arange(1.0 * chunk_size,
                                  2.0 * chunk_size,
                                  dtype=int)
        pol_ind['I'] = np.arange(0.0 * chunk_size, 2.0 * chunk_size, dtype=int)
        for ant in range(len(h5.ants)):
            h_pol = ~np.isnan(
                gaussian_centre[pol_ind['HH'], :, ant]) & ~np.isnan(
                    1. / gaussian_centre_std[pol_ind['HH'], :, ant])
            v_pol = ~np.isnan(
                gaussian_centre[pol_ind['VV'], :, ant]) & ~np.isnan(
                    1. / gaussian_centre_std[pol_ind['VV'], :, ant])
            valid_solutions = np.count_nonzero(
                h_pol & v_pol
            )  # Note this is twice the number of solutions because of the Az & El parts
            print("%i valid solutions out of %s for %s on %s at %s " %
                  (valid_solutions // 2, chunks, h5.ants[ant].name,
                   target.name, str(katpoint.Timestamp(middle_time))))
            if debug:  #debug_text
                for pol_i, pol in enumerate(["H", "V"]):
                    for chunk in range(chunks * pol_i, chunks * (pol_i + 1)):
                        line = []
                        freq = h5.channel_freqs[slice(
                            chunk * (h5.shape[1] // chunks),
                            (chunk + 1) * (h5.shape[1] // chunks))].mean()
                        line.append(h5.ants[ant].name + pol)
                        line.append(target.name)
                        line.append(str(freq / 1e6))  #MHz
                        line.append(str(gaussian_centre[chunk, 0, ant]))
                        line.append(str(gaussian_centre[chunk, 1, ant]))
                        line.append(str(gaussian_centre_std[chunk, 0, ant]))
                        line.append(str(gaussian_centre_std[chunk, 1, ant]))
                        line.append(str(gaussian_width[chunk, 0, ant]))
                        line.append(str(gaussian_width[chunk, 1, ant]))
                        line.append(str(gaussian_width_std[chunk, 0, ant]))
                        line.append(str(gaussian_width_std[chunk, 1, ant]))
                        line.append(str(gaussian_height[chunk, ant]))
                        line.append(str(gaussian_height_std[chunk, ant]))
                        debug_text.append(','.join(line))
            if valid_solutions // 2 > 0:  # a bit overboard
                name = h5.ants[ant].name
                ant_pointing[name] = {}
                ant_pointing[name]["antenna"] = h5.ants[ant].name
                ant_pointing[name]["valid_solutions"] = valid_solutions
                ant_pointing[name]["dataset"] = h5.name.split('/')[-1].split(
                    '.')[0]
                ant_pointing[name]["target"] = target.name
                ant_pointing[name]["timestamp_ut"] = str(
                    katpoint.Timestamp(middle_time))
                ant_pointing[name][
                    "data_unit"] = 'Jy' if calibrated else 'counts'
                ant_pointing[name]["frequency"] = h5.freqs.mean()
                ant_pointing[name]["flux"] = average_flux
                ant_pointing[name]["temperature"] = temperature
                ant_pointing[name]["pressure"] = pressure
                ant_pointing[name]["humidity"] = humidity
                ant_pointing[name]["wind_speed"] = wind_speed
                ant_pointing[name]["wind_direction"] = wind_direction
                # work out the sun's angle
                sun_azel = katpoint.rad2deg(
                    np.array(sun.azel(middle_time, antenna=h5.ants[ant])))
                ant_pointing[name]["sun_az"] = sun_azel.tolist()[0]
                ant_pointing[name]["sun_el"] = sun_azel.tolist()[1]
                ant_pointing[name]["timestamp"] = middle_time.astype(int)
                #Work out the Target position and the requested position
                # Start with requested (az, el) coordinates, as they apply at the middle time for a moving target
                requested_azel = target.azel(middle_time, antenna=h5.ants[ant])
                # Correct for refraction, which becomes the requested value at input of pointing model
                rc = katpoint.RefractionCorrection()
                requested_azel = [
                    requested_azel[0],
                    rc.apply(requested_azel[1], temperature, pressure,
                             humidity)
                ]
                requested_azel = katpoint.rad2deg(np.array(requested_azel))
                target_azel = katpoint.rad2deg(
                    np.array(target.azel(middle_time, antenna=h5.ants[ant])))
                ant_pointing[name]["azimuth"] = target_azel.tolist()[0]
                ant_pointing[name]["elevation"] = target_azel.tolist()[1]
                azel_beam = w_average(
                    gaussian_centre[pol_ind["I"], :, ant],
                    axis=0,
                    weights=1. / gaussian_centre_std[pol_ind["I"], :, ant]**2)
                # Make sure the offset is a small angle around 0 degrees
                offset_azel = katpoint.wrap_angle(azel_beam - requested_azel,
                                                  360.)
                ant_pointing[name]["delta_azimuth"] = offset_azel.tolist()[0]
                ant_pointing[name]["delta_elevation"] = offset_azel.tolist()[1]
                ant_pointing[name]["delta_elevation_std"] = 0.0  #calc
                ant_pointing[name]["delta_azimuth_std"] = 0.0  #calc
                for pol in pol_ind:
                    ant_pointing[name]["beam_height_%s" % (pol)] = w_average(
                        gaussian_height[pol_ind[pol], ant],
                        axis=0,
                        weights=1. / gaussian_height_std[pol_ind[pol], ant]**2)
                    ant_pointing[name]["beam_height_%s_std" % (pol)] = np.sqrt(
                        np.nansum(1. /
                                  gaussian_height_std[pol_ind[pol], ant]**2))
                    ant_pointing[name]["beam_width_%s" % (pol)] = w_average(
                        gaussian_width[pol_ind[pol], :, ant],
                        axis=0,
                        weights=1. /
                        gaussian_width_std[pol_ind[pol], :, ant]**2).mean()
                    ant_pointing[name]["beam_width_%s_std" % (pol)] = np.sqrt(
                        np.nansum(1. /
                                  gaussian_width_std[pol_ind[pol], :, ant]**2))
                    ant_pointing[name]["baseline_height_%s" % (pol)] = 0.0
                    ant_pointing[name]["baseline_height_%s_std" % (pol)] = 0.0
                    ant_pointing[name][
                        "refined_%s" %
                        (pol)] = 5.0  # I don't know what this means
                    ant_pointing[name]["azimuth_%s" % (pol)] = w_average(
                        gaussian_centre[pol_ind[pol], 0, ant],
                        axis=0,
                        weights=1. /
                        gaussian_centre_std[pol_ind[pol], 0, ant]**2)
                    ant_pointing[name]["elevation_%s" % (pol)] = w_average(
                        gaussian_centre[pol_ind[pol], 1, ant],
                        axis=0,
                        weights=1. /
                        gaussian_centre_std[pol_ind[pol], 1, ant]**2)
                    ant_pointing[name]["azimuth_%s_std" % (pol)] = np.sqrt(
                        np.nansum(
                            1. / gaussian_centre_std[pol_ind[pol], 0, ant]**2))
                    ant_pointing[name]["elevation_%s_std" % (pol)] = np.sqrt(
                        np.nansum(
                            1. / gaussian_centre_std[pol_ind[pol], 1, ant]**2))
            else:
                print("No (%i) solutions for %s on %s at %s " %
                      (valid_solutions, h5.ants[ant].name, target.name,
                       str(katpoint.Timestamp(middle_time))))
        if debug:  #debug_text
            debug_text.append('')
            base = "%s_%s" % (h5.name.split('/')[-1].split('.')[0],
                              "interferometric_pointing_DEBUG")
            g = file('%s:Scan%i:%s' % (base, compscan_index, target.name), 'w')
            g.write("\n".join(debug_text))
            g.close()
        return ant_pointing
Esempio n. 25
0
def plot_timeseries(num_bls, baseline_names, scan_az, scan_el, scan_timestamps,
                    scan_vis, scan_freqinds, scan_autos):
    """num_bls is the number of baselines in the array, baseline_names is a list of all the correlation product
    in active_pols, scan_az is a list of all the scan in azemuth, scan_el is the list of all the scans in elevation
    ,scan_timestamps is a list of timestamps for each each scan,scan_autos is a list amplitude for each antenna.
    """
    #plot timeseries,spectrograph and spectrum for each antenna
    #for p,active_pol in enumerate(['H','V']):
    print 'active_pol', active_pol
    for i in range(num_ants):
        print 'Antenna name', data.corr_products[i][0], i
        ant_name = data.corr_products[i][0]
        amp = np.vstack([scan[:, :, i] for scan in scan_autos])
        az = np.hstack([a[i] for a in scan_az])
        el = np.hstack([e[i] for e in scan_el])
        fig, [[ax1, ax2], [ax3, ax4]] = plt.subplots(2, 2, figsize=(12, 8))
        fig.suptitle('Ant: %s' % (ant_name), fontsize=16)
        fig.subplots_adjust(top=0.95)
        ax1.errorbar(np.hstack(scan_timestamps),
                     np.nanmean(amp, axis=1),
                     np.nanstd(amp, axis=1),
                     color='grey')

        ax1.fill_between(np.hstack(scan_timestamps),
                         np.nanmin(amp, axis=1),
                         np.nanmax(amp, axis=1),
                         color='lightgrey')

        ax1.plot(np.hstack(scan_timestamps),
                 np.nanmean(amp, axis=1),
                 color='b')
        ax1.set_title('Time series')
        ax1.set_xlabel('Time (s), since %s' %
                       (katpoint.Timestamp(data.start_time).local(), ))
        ax1.set_ylabel('Correlator counts')
        ax1.set_ylim(0, 4000)
        ax1.set_xlim(scan_timestamps[0][0], scan_timestamps[-1][-1])
        for t in scan_timestamps:
            ax1.axvline(t[0],
                        linestyle='dotted',
                        color='mistyrose',
                        linewidth=1)

        ma_amp = np.ma.masked_where(np.isnan(amp.T), amp.T)
        ax2.pcolormesh(np.hstack(scan_timestamps), data.channel_freqs / 1e6,
                       10 * np.log10(ma_amp))
        ax2.set_title('Spectrogram')
        ax2.set_xlabel('Time (s), since %s' %
                       (katpoint.Timestamp(data.start_time).local(), ))
        ax2.set_xlim(scan_timestamps[0][0], scan_timestamps[-1][-1])
        ax2.set_ylabel('Frequency/[MHz]')
        ax2.set_ylim(data.channel_freqs[0] / 1e6, data.channel_freqs[-1] / 1e6)

        ax3.errorbar(data.channel_freqs / 1e6,
                     np.nanmean(amp, axis=0),
                     np.nanstd(amp, axis=0),
                     color='grey')
        ax3.fill_between(data.channel_freqs / 1e6,
                         np.nanmin(amp, axis=0),
                         np.nanmax(amp, axis=0),
                         color='lightgrey')
        ax3.plot(data.channel_freqs / 1e6, np.nanmean(amp, axis=0), color='b')
        ax3.set_title('Spectrum')
        ax3.set_xlabel('Frequency/[MHz]')
        ax3.set_xlim(data.channel_freqs[0] / 1e6, data.channel_freqs[-1] / 1e6)
        ax3.set_ylabel('Correlator counts')
        ax3.set_ylim(0, 4000)

        ax4.plot(az, el, "*")
        ax4.set_title('Pointing')
        ax4.set_xlabel('Azimuth/[Degrees]')
        ax4.set_ylabel('Elevation/[Degrees]')
    return fig
Esempio n. 26
0
def main():
    tag_to_intent = {
        'gaincal': 'CALIBRATE_PHASE,CALIBRATE_AMPLI',
        'bpcal': 'CALIBRATE_BANDPASS,CALIBRATE_FLUX',
        'target': 'TARGET'
    }

    usage = "%prog [options] <dataset> [<dataset2>]*"
    description = "Convert MVF dataset(s) to CASA MeasurementSet. The datasets may " \
                  "be local filenames or archive URLs (including access tokens). " \
                  "If there are multiple datasets they will be concatenated via " \
                  "katdal before conversion."
    parser = optparse.OptionParser(usage=usage, description=description)
    parser.add_option("-o",
                      "--output-ms",
                      default=None,
                      help="Name of output MeasurementSet")
    parser.add_option(
        "-c",
        "--circular",
        action="store_true",
        default=False,
        help="Produce quad circular polarisation. (RR, RL, LR, LL) "
        "*** Currently just relabels the linear pols ****")
    parser.add_option(
        "-r",
        "--ref-ant",
        help="Override the reference antenna used to pick targets "
        "and scans (default is the 'array' antenna in MVFv4 "
        "and the first antenna in older formats)")
    parser.add_option("-t",
                      "--tar",
                      action="store_true",
                      default=False,
                      help="Tar-ball the MS")
    parser.add_option(
        "-f",
        "--full_pol",
        action="store_true",
        default=False,
        help="Produce a full polarisation MS in CASA canonical order "
        "(HH, HV, VH, VV). Default is to produce HH,VV only.")
    parser.add_option("-v",
                      "--verbose",
                      action="store_true",
                      default=False,
                      help="More verbose progress information")
    parser.add_option("-w",
                      "--stop-w",
                      action="store_true",
                      default=False,
                      help="Use W term to stop fringes for each baseline")
    parser.add_option("-p",
                      "--pols-to-use",
                      default=None,
                      help="Select polarisation products to include in MS as "
                      "comma-separated list (from: HH, HV, VH, VV). "
                      "Default is all available from (HH, VV).")
    parser.add_option(
        "-u",
        "--uvfits",
        action="store_true",
        default=False,
        help="Print command to convert MS to miriad uvfits in casapy")
    parser.add_option("-a",
                      "--no-auto",
                      action="store_true",
                      default=False,
                      help="MeasurementSet will exclude autocorrelation data")
    parser.add_option(
        "-s",
        "--keep-spaces",
        action="store_true",
        default=False,
        help="Keep spaces in source names, default removes spaces")
    parser.add_option(
        "-C",
        "--channel-range",
        help="Range of frequency channels to keep (zero-based inclusive "
        "'first_chan,last_chan', default is all channels)")
    parser.add_option("-e",
                      "--elevation-range",
                      help="Flag elevations outside the range "
                      "'lowest_elevation,highest_elevation'")
    parser.add_option(
        "-m",
        "--model-data",
        action="store_true",
        default=False,
        help="Add MODEL_DATA and CORRECTED_DATA columns to the MS. "
        "MODEL_DATA initialised to unity amplitude zero phase, "
        "CORRECTED_DATA initialised to DATA.")
    flag_names = ', '.join(name for name in FLAG_NAMES
                           if not name.startswith('reserved'))
    parser.add_option("--flags",
                      default="all",
                      help="List of online flags to apply "
                      "(from " + flag_names + ") "
                      "default is all flags, '' will apply no flags)")
    parser.add_option("--dumptime",
                      type=float,
                      default=0.0,
                      help="Output time averaging interval in seconds, "
                      "default is no averaging")
    parser.add_option("--chanbin",
                      type=int,
                      default=0,
                      help="Bin width for channel averaging in channels, "
                      "default is no averaging")
    parser.add_option(
        "--flagav",
        action="store_true",
        default=False,
        help="If a single element in an averaging bin is flagged, "
        "flag the averaged bin")
    parser.add_option("--caltables",
                      action="store_true",
                      default=False,
                      help="Create calibration tables from gain solutions in "
                      "the dataset (if present)")
    parser.add_option("--quack",
                      type=int,
                      default=1,
                      metavar='N',
                      help="Discard the first N dumps "
                      "(which are frequently incomplete)")
    parser.add_option("--applycal",
                      default="",
                      help="List of calibration solutions to apply to data as "
                      "a string of comma-separated names, e.g. 'l1' or "
                      "'K,B,G'. Use 'default' for L1 + L2 and 'all' for "
                      "all available products.")
    (options, args) = parser.parse_args()

    # Loading is I/O-bound, so give more threads than CPUs
    dask.config.set(
        pool=multiprocessing.pool.ThreadPool(4 * multiprocessing.cpu_count()))

    if len(args) < 1:
        parser.print_help()
        raise RuntimeError(
            "Please provide one or more MVF dataset names as arguments")

    if options.elevation_range and len(options.elevation_range.split(',')) < 2:
        raise RuntimeError(
            "You have selected elevation flagging. Please provide elevation "
            "limits in the form 'lowest_elevation,highest_elevation'.")

    if len(args) > 1:
        print("Concatenating multiple datasets into single MS.")

    def antenna_indices(na, no_auto_corr):
        """Get default antenna1 and antenna2 arrays."""
        return np.triu_indices(na, 1 if no_auto_corr else 0)

    def corrprod_index(dataset):
        """The correlator product index (with -1 representing missing indices)."""
        corrprod_to_index = {
            tuple(cp): n
            for n, cp in enumerate(dataset.corr_products)
        }

        # ==========================================
        # Generate per-baseline antenna pairs and
        # correlator product indices
        # ==========================================

        def _cp_index(a1, a2, pol):
            """Create correlator product index from antenna pair and pol."""
            a1 = a1.name + pol[0].lower()
            a2 = a2.name + pol[1].lower()
            return corrprod_to_index.get((a1, a2), -1)

        # Generate baseline antenna pairs
        ant1_index, ant2_index = antenna_indices(len(dataset.ants),
                                                 options.no_auto)
        # Order as similarly to the input as possible, which gives better performance
        # in permute_baselines.
        bl_indices = list(zip(ant1_index, ant2_index))
        bl_indices.sort(key=lambda ants: _cp_index(dataset.ants[ants[
            0]], dataset.ants[ants[1]], pols_to_use[0]))
        # Undo the zip
        ant1_index[:] = [bl[0] for bl in bl_indices]
        ant2_index[:] = [bl[1] for bl in bl_indices]
        ant1 = [dataset.ants[a1] for a1 in ant1_index]
        ant2 = [dataset.ants[a2] for a2 in ant2_index]

        # Create actual correlator product index
        cp_index = [
            _cp_index(a1, a2, p) for a1, a2 in zip(ant1, ant2)
            for p in pols_to_use
        ]
        cp_index = np.array(cp_index, dtype=np.int32)

        CPInfo = namedtuple(
            "CPInfo", ["ant1_index", "ant2_index", "ant1", "ant2", "cp_index"])
        return CPInfo(ant1_index, ant2_index, ant1, ant2, cp_index)

    # Open dataset
    open_args = args[0] if len(args) == 1 else args
    # katdal can handle a list of datasets, which get virtually concatenated internally
    dataset = katdal.open(open_args,
                          ref_ant=options.ref_ant,
                          applycal=options.applycal)
    if dataset.applycal_products:
        print('The following calibration products will be applied:',
              ', '.join(dataset.applycal_products))
    else:
        print('No calibration products will be applied')

    # Get list of unique polarisation products in the dataset
    pols_in_dataset = np.unique([(cp[0][-1] + cp[1][-1]).upper()
                                 for cp in dataset.corr_products])

    # Which polarisation do we want to write into the MS
    # select all possible pols if full-pol selected, otherwise the selected polarisations via pols_to_use
    # otherwise finally select any of HH,VV present (the default).
    pols_to_use = ['HH', 'HV', 'VH', 'VV'] if (options.full_pol or options.circular) else \
        list(np.unique(options.pols_to_use.split(','))) if options.pols_to_use else \
        [pol for pol in ['HH', 'VV'] if pol in pols_in_dataset]

    # Check we have the chosen polarisations
    if np.any([pol not in pols_in_dataset for pol in pols_to_use]):
        raise RuntimeError(
            f"Selected polarisation(s): {', '.join(pols_to_use)} not available. "
            f"Available polarisation(s): {','.join(pols_in_dataset)}")

    # Set full_pol if this is selected via options.pols_to_use
    if set(pols_to_use) == {'HH', 'HV', 'VH', 'VV'} and not options.circular:
        options.full_pol = True

    # Extract one MS per spectral window in the dataset(s)
    for win in range(len(dataset.spectral_windows)):
        dataset.select(reset='T')

        centre_freq = dataset.spectral_windows[win].centre_freq
        print(
            f'Extract MS for spw {win}: centre frequency {int(centre_freq)} Hz'
        )

        # If no output MS directory name supplied, infer it from dataset(s)
        if options.output_ms is None:
            if len(dataset.spectral_windows) > 1:
                # Use frequency label to disambiguate multiple spectral windows
                ms_name = default_ms_name(args, centre_freq)
            else:
                ms_name = default_ms_name(args)
        else:
            ms_name = options.output_ms
        basename = os.path.splitext(ms_name)[0]

        # Discard first N dumps which are frequently incomplete
        dataset.select(spw=win,
                       scans='track',
                       flags=options.flags,
                       dumps=slice(options.quack, None))

        # The first step is to copy the blank template MS to our desired output
        # (making sure it's not already there)
        if os.path.exists(ms_name):
            raise RuntimeError(
                f"MS '{ms_name}' already exists - please remove it "
                "before running this script")

        print("Will create MS output in " + ms_name)

        # Instructions to flag by elevation if requested
        if options.elevation_range is not None:
            emin, emax = options.elevation_range.split(',')
            print(
                "\nThe MS can be flagged by elevation in casapy v3.4.0 or higher, with the command:"
            )
            print(
                f"      tflagdata(vis='{ms_name}', mode='elevation', lowerlimit={emin}, "
                f"upperlimit={emax}, action='apply')\n")

        # Instructions to create uvfits file if requested
        if options.uvfits:
            uv_name = basename + ".uvfits"
            print(
                "\nThe MS can be converted into a uvfits file in casapy, with the command:"
            )
            print(
                f"      exportuvfits(vis='{ms_name}', fitsfile='{uv_name}', datacolumn='data')\n"
            )

        if options.full_pol:
            print(
                "\n#### Producing a full polarisation MS (HH,HV,VH,VV) ####\n")
        else:
            print(
                f"\n#### Producing MS with {','.join(pols_to_use)} polarisation(s) ####\n"
            )

        # if fringe stopping is requested, check that it has not already been done in hardware
        if options.stop_w:
            print(
                "W term in UVW coordinates will be used to stop the fringes.")
            try:
                autodelay = [
                    int(ad) for ad in dataset.sensor['DBE/auto-delay']
                ]
                if all(autodelay):
                    print("Fringe-stopping already performed in hardware... "
                          "do you really want to stop the fringes here?")
            except KeyError:
                pass

        # Select frequency channel range
        if options.channel_range is not None:
            channel_range = [
                int(chan_str) for chan_str in options.channel_range.split(',')
            ]
            first_chan, last_chan = channel_range[0], channel_range[1]

            if (first_chan < 0) or (last_chan >= dataset.shape[1]):
                raise RuntimeError(
                    "Requested channel range outside data set boundaries. "
                    f"Set channels in the range [0,{dataset.shape[1] - 1}]")
            if first_chan > last_chan:
                raise RuntimeError(
                    f"First channel ({first_chan}) bigger than last channel "
                    f"({last_chan}) - did you mean it the other way around?")

            chan_range = slice(first_chan, last_chan + 1)
            print(f"\nChannel range {first_chan} through {last_chan}.")
            dataset.select(channels=chan_range)

        # Are we averaging?
        average_data = False

        # Determine the number of channels
        nchan = len(dataset.channels)

        # Work out channel average and frequency increment
        if options.chanbin > 1:
            average_data = True
            # Check how many channels we are dropping
            chan_remainder = nchan % options.chanbin
            avg_nchan = int(nchan / min(nchan, options.chanbin))
            print(
                f"Averaging {options.chanbin} channels, output ms will have {avg_nchan} channels."
            )
            if chan_remainder > 0:
                print(
                    f"The last {chan_remainder} channels in the data will be dropped "
                    f"during averaging ({options.chanbin} does not divide {nchan})."
                )
            chan_av = options.chanbin
            nchan = avg_nchan
        else:
            # No averaging in channel
            chan_av = 1

        # Get the frequency increment per averaged channel
        channel_freq_width = dataset.channel_width * chan_av

        # Work out dump average and dump increment
        # Is the desired time bin greater than the dump period?
        if options.dumptime > dataset.dump_period:
            average_data = True
            dump_av = int(np.round(options.dumptime / dataset.dump_period))
            time_av = dump_av * dataset.dump_period
            print(
                f"Averaging {dataset.dump_period} second dumps to {time_av} seconds."
            )
        else:
            # No averaging in time
            dump_av = 1
            time_av = dataset.dump_period

        # Print a message if extending flags to averaging bins.
        if average_data and options.flagav and options.flags != '':
            print("Extending flags to averaging bins.")

        # Optionally keep only cross-correlation products
        if options.no_auto:
            dataset.select(corrprods='cross')
            print("\nCross-correlations only.")

        print(
            f"\nUsing {dataset.ref_ant} as the reference antenna. All targets and scans "
            "will be based on this antenna.\n")
        # MS expects timestamps in MJD seconds
        start_time = dataset.start_time.to_mjd() * 24 * 60 * 60
        end_time = dataset.end_time.to_mjd() * 24 * 60 * 60
        # MVF version 1 and 2 datasets are KAT-7; the rest are MeerKAT
        telescope_name = 'KAT-7' if dataset.version[0] in '12' else 'MeerKAT'

        # increment scans sequentially in the ms
        scan_itr = 1
        print("\nIterating through scans in dataset(s)...\n")

        cp_info = corrprod_index(dataset)
        nbl = cp_info.ant1_index.size
        npol = len(pols_to_use)

        field_names, field_centers, field_times = [], [], []
        obs_modes = ['UNKNOWN']
        total_size = 0

        # Create the MeasurementSet
        table_desc, dminfo = ms_extra.kat_ms_desc_and_dminfo(
            nbl=nbl, nchan=nchan, ncorr=npol, model_data=options.model_data)
        ms_extra.create_ms(ms_name, table_desc, dminfo)

        ms_dict = {}
        ms_dict['ANTENNA'] = ms_extra.populate_antenna_dict(
            [ant.name for ant in dataset.ants],
            [ant.position_ecef
             for ant in dataset.ants], [ant.diameter for ant in dataset.ants])
        ms_dict['FEED'] = ms_extra.populate_feed_dict(len(dataset.ants),
                                                      num_receptors_per_feed=2)
        ms_dict['DATA_DESCRIPTION'] = ms_extra.populate_data_description_dict()
        ms_dict['POLARIZATION'] = ms_extra.populate_polarization_dict(
            ms_pols=pols_to_use, circular=options.circular)
        ms_dict['OBSERVATION'] = ms_extra.populate_observation_dict(
            start_time, end_time, telescope_name, dataset.observer,
            dataset.experiment_id)

        # before resetting ms_dict, copy subset to caltable dictionary
        if options.caltables:
            caltable_dict = {}
            caltable_dict['ANTENNA'] = ms_dict['ANTENNA']
            caltable_dict['OBSERVATION'] = ms_dict['OBSERVATION']

        print("Writing static meta data...")
        ms_extra.write_dict(ms_dict, ms_name, verbose=options.verbose)

        # Pre-allocate memory buffers
        tsize = dump_av
        in_chunk_shape = (tsize, ) + dataset.shape[1:]
        scan_vis_data = np.empty(in_chunk_shape, dataset.vis.dtype)
        scan_weight_data = np.empty(in_chunk_shape, dataset.weights.dtype)
        scan_flag_data = np.empty(in_chunk_shape, dataset.flags.dtype)

        ms_chunk_shape = (SLOTS, tsize // dump_av, nbl, nchan, npol)
        raw_vis_data = ms_async.RawArray(ms_chunk_shape, scan_vis_data.dtype)
        raw_weight_data = ms_async.RawArray(ms_chunk_shape,
                                            scan_weight_data.dtype)
        raw_flag_data = ms_async.RawArray(ms_chunk_shape, scan_flag_data.dtype)
        ms_vis_data = raw_vis_data.asarray()
        ms_weight_data = raw_weight_data.asarray()
        ms_flag_data = raw_flag_data.asarray()

        # Need to limit the queue to prevent overwriting slots before they've
        # been processed. The -2 allows for the one we're writing and the one
        # the writer process is reading.
        work_queue = multiprocessing.Queue(maxsize=SLOTS - 2)
        result_queue = multiprocessing.Queue()
        writer_process = multiprocessing.Process(
            target=ms_async.ms_writer_process,
            args=(work_queue, result_queue, options, dataset.ants, cp_info,
                  ms_name, raw_vis_data, raw_weight_data, raw_flag_data))
        writer_process.start()

        try:
            slot = 0
            for scan_ind, scan_state, target in dataset.scans():
                s = time.time()
                scan_len = dataset.shape[0]
                prefix = f'scan {scan_ind:3d} ({scan_len:4d} samples)'
                if scan_state != 'track':
                    if options.verbose:
                        print(f"{prefix} skipped '{scan_state}' - not a track")
                    continue
                if scan_len < 2:
                    if options.verbose:
                        print(f'{prefix} skipped - too short')
                    continue
                if target.body_type != 'radec':
                    if options.verbose:
                        print(
                            f"{prefix} skipped - target '{target.name}' not RADEC"
                        )
                    continue
                print(
                    f"{prefix} loaded. Target: '{target.name}'. Writing to disk..."
                )

                # Get the average dump time for this scan (equal to scan length
                # if the dump period is longer than a scan)
                dump_time_width = min(time_av, scan_len * dataset.dump_period)

                # Get UTC timestamps
                utc_seconds = dataset.timestamps[:]
                # Update field lists if this is a new target
                if target.name not in field_names:
                    # Since this will be an 'radec' target, we don't need antenna
                    # or timestamp to get the (astrometric) ra, dec
                    ra, dec = target.radec()

                    field_names.append(target.name)
                    field_centers.append((ra, dec))
                    field_times.append(
                        katpoint.Timestamp(utc_seconds[0]).to_mjd() * 60 * 60 *
                        24)
                    if options.verbose:
                        print(
                            f"Added new field {len(field_names) - 1}: '{target.name}' {ra} {dec}"
                        )
                field_id = field_names.index(target.name)

                # Determine the observation tag for this scan
                obs_tag = ','.join(tag_to_intent[tag] for tag in target.tags
                                   if tag in tag_to_intent)

                # add tag to obs_modes list
                if obs_tag and obs_tag not in obs_modes:
                    obs_modes.append(obs_tag)
                # get state_id from obs_modes list if it is in the list, else 0 'UNKNOWN'
                state_id = obs_modes.index(
                    obs_tag) if obs_tag in obs_modes else 0

                # Iterate over time in some multiple of dump average
                ntime = utc_seconds.size
                ntime_av = 0

                for ltime in range(0, ntime - tsize + 1, tsize):
                    utime = ltime + tsize
                    tdiff = utime - ltime
                    out_freqs = dataset.channel_freqs

                    # load all visibility, weight and flag data
                    # for this scan's timestamps.
                    # Ordered (ntime, nchan, nbl*npol)
                    load(dataset, np.s_[ltime:utime, :, :], scan_vis_data,
                         scan_weight_data, scan_flag_data)

                    # This are updated as we go to point to the current storage
                    vis_data = scan_vis_data
                    weight_data = scan_weight_data
                    flag_data = scan_flag_data

                    out_utc = utc_seconds[ltime:utime]

                    # Overwrite the input visibilities with averaged visibilities,
                    # flags, weights, timestamps, channel freqs
                    if average_data:
                        vis_data, weight_data, flag_data, out_utc, out_freqs = \
                            averager.average_visibilities(vis_data, weight_data, flag_data,
                                                          out_utc, out_freqs, timeav=dump_av,
                                                          chanav=chan_av, flagav=options.flagav)

                        # Infer new time dimension from averaged data
                        tdiff = vis_data.shape[0]

                    # Select correlator products and permute axes
                    cp_index = cp_info.cp_index.reshape((nbl, npol))
                    vis_data, weight_data, flag_data = permute_baselines(
                        vis_data, weight_data, flag_data, cp_index,
                        ms_vis_data[slot], ms_weight_data[slot],
                        ms_flag_data[slot])

                    # Increment the number of averaged dumps
                    ntime_av += tdiff

                    # Check if writer process has crashed and abort if so
                    try:
                        result = result_queue.get_nowait()
                        raise result
                    except queue.Empty:
                        pass

                    work_queue.put(
                        ms_async.QueueItem(slot=slot,
                                           target=target,
                                           time_utc=out_utc,
                                           dump_time_width=dump_time_width,
                                           field_id=field_id,
                                           state_id=state_id,
                                           scan_itr=scan_itr))
                    slot += 1
                    if slot == SLOTS:
                        slot = 0

                work_queue.put(ms_async.EndOfScan())
                result = result_queue.get()
                if isinstance(result, Exception):
                    raise result
                scan_size = result.scan_size
                s1 = time.time() - s

                if average_data and utc_seconds.shape != ntime_av:
                    print(
                        f'Averaged {np.shape(utc_seconds)[0]} x {dataset.dump_period} second dumps '
                        f'to {ntime_av} x {dump_time_width} second dumps')

                scan_size_mb = float(scan_size) / (1024**2)

                print(f'Wrote scan data ({scan_size_mb:.3f} MiB) '
                      f'in {s1:.3f} s ({scan_size_mb / s1:.3f} MiBps)\n')

                scan_itr += 1
                total_size += scan_size

        finally:
            work_queue.put(None)
            writer_exc = None
            # Drain the result_queue so that we unblock the writer process
            while True:
                result = result_queue.get()
                if isinstance(result, Exception):
                    writer_exc = result
                elif result is None:
                    break
            writer_process.join()
        # This raise is deferred to outside the finally block, so that we don't
        # raise an exception while unwinding another one.
        if isinstance(writer_exc, Exception):
            raise writer_exc

        if total_size == 0:
            raise RuntimeError("No usable data found in MVF dataset "
                               "(pick another reference antenna, maybe?)")

        # Remove spaces from source names, unless otherwise specified
        field_names = [f.replace(' ', '') for f in field_names] \
            if not options.keep_spaces else field_names

        ms_dict = {}
        ms_dict['SPECTRAL_WINDOW'] = ms_extra.populate_spectral_window_dict(
            out_freqs, channel_freq_width * np.ones(len(out_freqs)))
        ms_dict['FIELD'] = ms_extra.populate_field_dict(
            field_centers, field_times, field_names)
        ms_dict['STATE'] = ms_extra.populate_state_dict(obs_modes)
        ms_dict['SOURCE'] = ms_extra.populate_source_dict(
            field_centers, field_times, field_names)

        print("\nWriting dynamic fields to disk....\n")
        # Finally we write the MS as per our created dicts
        ms_extra.write_dict(ms_dict, ms_name, verbose=options.verbose)
        if options.tar:
            tar = tarfile.open(f'{ms_name}.tar', 'w')
            tar.add(ms_name, arcname=os.path.basename(ms_name))
            tar.close()

        # --------------------------------------
        # Now write calibration product tables if required
        # Open first HDF5 file in the list to extract TelescopeState parameters from
        #   (can't extract telstate params from contatenated katdal file as it
        #    uses the hdf5 file directly)
        first_dataset = katdal.open(args[0], ref_ant=options.ref_ant)
        main_table = ms_extra.open_table(ms_name, verbose=options.verbose)

        if options.caltables:
            # copy extra subtable dictionary values necessary for caltable
            caltable_dict['SPECTRAL_WINDOW'] = ms_dict['SPECTRAL_WINDOW']
            caltable_dict['FIELD'] = ms_dict['FIELD']

            solution_types = ['G', 'B', 'K']
            ms_soltype_lookup = {
                'G': 'G Jones',
                'B': 'B Jones',
                'K': 'K Jones'
            }

            print("\nWriting calibration solution tables to disk....")
            if 'TelescopeState' not in first_dataset.file.keys():
                print(
                    " No TelescopeState in first dataset. Can't create solution tables.\n"
                )
            else:
                # first get solution antenna ordering
                #   newer files have the cal antlist as a sensor
                if 'cal_antlist' in first_dataset.file['TelescopeState'].keys(
                ):
                    a0 = first_dataset.file['TelescopeState/cal_antlist'][()]
                    antlist = telstate_decode(a0[0][1])
                #   older files have the cal antlist as an attribute
                elif 'cal_antlist' in first_dataset.file[
                        'TelescopeState'].attrs.keys():
                    antlist = np.safe_eval(
                        first_dataset.file['TelescopeState'].
                        attrs['cal_antlist'])
                else:
                    print(" No calibration antenna ordering in first dataset. "
                          "Can't create solution tables.\n")
                    continue
                antlist_indices = list(range(len(antlist)))

                # for each solution type in the file, create a table
                for sol in solution_types:
                    caltable_name = f'{basename}.{sol}'
                    sol_name = f'cal_product_{sol}'

                    if sol_name in first_dataset.file['TelescopeState'].keys():
                        print(
                            f' - creating {sol} solution table: {caltable_name}\n'
                        )

                        # get solution values from the file
                        solutions = first_dataset.file['TelescopeState'][
                            sol_name][()]
                        soltimes, solvals = [], []
                        for t, s in solutions:
                            soltimes.append(t)
                            solvals.append(telstate_decode(s))
                        solvals = np.array(solvals)

                        # convert averaged UTC timestamps to MJD seconds.
                        sol_mjd = np.array([
                            katpoint.Timestamp(time_utc).to_mjd() * 24 * 60 *
                            60 for time_utc in soltimes
                        ])

                        # determine solution characteristics
                        if len(solvals.shape) == 4:
                            ntimes, nchans, npols, nants = solvals.shape
                        else:
                            ntimes, npols, nants = solvals.shape
                            nchans = 1
                            solvals = solvals.reshape(ntimes, nchans, npols,
                                                      nants)

                        # create calibration solution measurement set
                        caltable_desc = ms_extra.caltable_desc_float \
                            if sol == 'K' else ms_extra.caltable_desc_complex
                        caltable = ms_extra.open_table(caltable_name,
                                                       tabledesc=caltable_desc)

                        # add other keywords for main table
                        if sol == 'K':
                            caltable.putkeyword('ParType', 'Float')
                        else:
                            caltable.putkeyword('ParType', 'Complex')
                        caltable.putkeyword('MSName', ms_name)
                        caltable.putkeyword('VisCal', ms_soltype_lookup[sol])
                        caltable.putkeyword('PolBasis', 'unknown')
                        # add necessary units
                        caltable.putcolkeywords(
                            'TIME', {
                                'MEASINFO': {
                                    'Ref': 'UTC',
                                    'type': 'epoch'
                                },
                                'QuantumUnits': ['s']
                            })
                        caltable.putcolkeywords('INTERVAL',
                                                {'QuantumUnits': ['s']})
                        # specify that this is a calibration table
                        caltable.putinfo({
                            'readme': '',
                            'subType': ms_soltype_lookup[sol],
                            'type': 'Calibration'
                        })

                        # get the solution data to write to the main table
                        solutions_to_write = solvals.transpose(
                            0, 3, 1, 2).reshape(ntimes * nants, nchans, npols)

                        # MS's store delays in nanoseconds
                        if sol == 'K':
                            solutions_to_write = 1e9 * solutions_to_write

                        times_to_write = np.repeat(sol_mjd, nants)
                        antennas_to_write = np.tile(antlist_indices, ntimes)
                        # just mock up the scans -- this doesnt actually correspond to scans in the data
                        scans_to_write = np.repeat(list(range(len(sol_mjd))),
                                                   nants)
                        # write the main table
                        main_cal_dict = ms_extra.populate_caltable_main_dict(
                            times_to_write, solutions_to_write,
                            antennas_to_write, scans_to_write)
                        ms_extra.write_rows(caltable,
                                            main_cal_dict,
                                            verbose=options.verbose)

                        # create and write subtables
                        subtables = [
                            'OBSERVATION', 'ANTENNA', 'FIELD',
                            'SPECTRAL_WINDOW', 'HISTORY'
                        ]
                        subtable_key = [(os.path.join(caltable.name(), st))
                                        for st in subtables]

                        # Add subtable keywords and create subtables
                        # ------------------------------------------------------------------------------
                        # # this gives an error in casapy:
                        # *** Error *** MSObservation(const Table &) - table is not a valid MSObservation
                        # for subtable, subtable_location in zip(subtables, subtable_key)
                        #    ms_extra.open_table(subtable_location, tabledesc=ms_extra.ms_desc[subtable])
                        #    caltable.putkeyword(subtable, 'Table: {0}'.format(subtable_location))
                        # # write the static info for the table
                        # ms_extra.write_dict(caltable_dict, caltable.name(), verbose=options.verbose)
                        # ------------------------------------------------------------------------------
                        # instead try just copying the main table subtables
                        #   this works to plot the data casapy, but the solutions still can't be
                        #   applied in casapy...
                        for subtable, subtable_location in zip(
                                subtables, subtable_key):
                            main_subtable = ms_extra.open_table(
                                os.path.join(main_table.name(), subtable))
                            main_subtable.copy(subtable_location, deep=True)
                            caltable.putkeyword(subtable,
                                                f'Table: {subtable_location}')
                            if subtable == 'ANTENNA':
                                caltable.putkeyword('NAME', antlist)
                                caltable.putkeyword('STATION', antlist)
                        if sol != 'B':
                            spw_table = ms_extra.open_table(
                                os.path.join(caltable.name(),
                                             'SPECTRAL_WINDOW'))
                            spw_table.removerows(spw_table.rownumbers())
                            cen_index = len(out_freqs) // 2
                            # the delay values in the cal pipeline are calculated relative to frequency 0
                            ref_freq = 0.0 if sol == 'K' else None
                            spw_dict = {
                                'SPECTRAL_WINDOW':
                                ms_extra.populate_spectral_window_dict(
                                    np.atleast_1d(out_freqs[cen_index]),
                                    np.atleast_1d(channel_freq_width),
                                    ref_freq=ref_freq)
                            }
                            ms_extra.write_dict(spw_dict,
                                                caltable.name(),
                                                verbose=options.verbose)

                        # done with this caltable
                        caltable.flush()
                        caltable.close()

        main_table.close()
Esempio n. 27
0
def select_environment(data, antenna, condition="normal"):
    """ Flag data for environmental conditions. Options are:
    normal: Wind < 9.8m/s, -5C < Temperature < 40C, DeltaTemp < 3deg in 20 minutes
    optimal: Wind < 2.9m/s, -5C < Temperature < 35C, DeltaTemp < 2deg in 10 minutes
    ideal: Wind < 1m/s, 19C < Temp < 21C, DeltaTemp < 1deg in 30 minutes
    """
    # Convert timestamps to UTCseconds using katpoint
    timestamps = np.array(
        [katpoint.Timestamp(timestamp) for timestamp in data["timestamp_ut"]],
        dtype='float32')
    # Fit a smooth function (cubic spline) in time to the temperature and wind data
    raw_wind = data["wind_speed"]
    raw_temp = data["temperature"]

    fit_wind = interpolate.InterpolatedUnivariateSpline(timestamps,
                                                        raw_wind,
                                                        k=3)
    fit_temp = interpolate.InterpolatedUnivariateSpline(timestamps,
                                                        raw_temp,
                                                        k=3)
    #fit_temp_grad = fit_temp.derivative()

    # Day/Night
    # Night is defined as when the Sun is at -5deg.
    # Set up Sun target
    sun = katpoint.Target('Sun, special', antenna=antenna)
    sun_elevation = katpoint.rad2deg(sun.azel(timestamps)[1])

    # Apply limits on environmental conditions
    good = [True] * data.shape[0]

    # Set up limits on environmental conditions
    if condition == 'ideal':
        windlim = 1.
        temp_low = 19.
        temp_high = 21.
        deltatemp = 1. / (30. * 60.)
        sun_elev_lim = -5.
    elif condition == 'optimum':
        windlim = 2.9
        temp_low = -5.
        temp_high = 35.
        deltatemp = 2. / (10. * 60.)
        sun_elev_lim = -5.
    elif condition == 'normal':
        windlim = 9.8
        temp_low = -5.
        temp_high = 40.
        deltatemp = 3. / (20. * 60.)
        sun_elev_lim = 100.  #Daytime
    else:
        return good

    good = good & (fit_wind(timestamps) < windlim)
    good = good & ((fit_temp(timestamps) > temp_low) &
                   (fit_temp(timestamps) < temp_high))

    #Get the temperature gradient
    temp_grad = [
        fit_temp.derivatives(timestamp)[1] for timestamp in timestamps
    ]
    good = good & (np.abs(temp_grad) < deltatemp)

    #Day or night?
    good = good & (sun_elevation < sun_elev_lim)

    return good
Esempio n. 28
0
    def __init__(self,
                 filename,
                 ref_ant='',
                 time_offset=0.0,
                 mode='r',
                 **kwargs):
        DataSet.__init__(self, filename, ref_ant, time_offset)

        # Load file
        self.file, self.version = H5DataV1._open(filename, mode)
        f = self.file

        # Load main HDF5 groups
        ants_group, corr_group, data_group = f['Antennas'], f['Correlator'], f[
            'Scans']
        # Get observation script parameters, with defaults
        self.observer = self.obs_params['observer'] = f.attrs.get(
            'observer', '')
        self.description = self.obs_params['description'] = f.attrs.get(
            'description', '')
        self.experiment_id = self.obs_params['experiment_id'] = f.attrs.get(
            'experiment_id', '')

        # Collect all groups below data group that fit the description of a scan group
        scan_groups = []

        def register_scan_group(name, obj):
            """A scan group is defined as a group named 'Scan*' with non-empty timestamps and data."""
            if isinstance(obj, h5py.Group) and name.split('/')[-1].startswith('Scan') and \
               'data' in obj and 'timestamps' in obj and len(obj['timestamps']) > 0:
                scan_groups.append(obj)

        data_group.visititems(register_scan_group)
        # Sort scan groups in chronological order via 'decorate-sort-undecorate' (DSU) idiom
        decorated_scan_groups = [(s['timestamps'][0], s) for s in scan_groups]
        decorated_scan_groups.sort()
        self._scan_groups = [s[-1] for s in decorated_scan_groups]

        # ------ Extract timestamps ------

        self.dump_period = 1.0 / corr_group.attrs['dump_rate_hz']
        self._segments = np.cumsum(
            [0] + [len(s['timestamps']) for s in self._scan_groups])
        num_dumps = self._segments[-1]
        self._time_keep = np.ones(num_dumps, dtype=np.bool)
        data_timestamps = self.timestamps
        if data_timestamps[0] < 1e9:
            logger.warning(
                "File '%s' has invalid first correlator timestamp (%f)" % (
                    filename,
                    data_timestamps[0],
                ))
        # Estimate timestamps by assuming they are uniformly spaced (much quicker than loading them from file).
        # This is useful for the purpose of segmenting data set, where accurate timestamps are not that crucial.
        # The real timestamps are still loaded when the user explicitly asks for them.
        # Do quick test for uniform spacing of timestamps (necessary but not sufficient).
        if abs((data_timestamps[-1] - data_timestamps[0]) / self.dump_period +
               1 - num_dumps) < 0.01:
            # Estimate the timestamps as being uniformly spaced
            data_timestamps = data_timestamps[
                0] + self.dump_period * np.arange(num_dumps)
        else:
            # Load the real timestamps instead and warn the user, as this is anomalous
            data_timestamps = data_timestamps[:]
            expected_dumps = (data_timestamps[-1] -
                              data_timestamps[0]) / self.dump_period + 1
            logger.warning((
                "Irregular timestamps detected in file '%s':"
                "expected %.3f dumps based on dump period and start/end times, got %d instead"
            ) % (filename, expected_dumps, num_dumps))
        self.start_time = katpoint.Timestamp(data_timestamps[0] -
                                             0.5 * self.dump_period)
        self.end_time = katpoint.Timestamp(data_timestamps[-1] +
                                           0.5 * self.dump_period)

        # ------ Extract sensors ------

        # Populate sensor cache with all HDF5 datasets below antennas group that fit the description of a sensor
        cache = {}

        def register_sensor(name, obj):
            if isinstance(obj, h5py.Dataset) and obj.shape != (
            ) and obj.dtype.names == ('timestamp', 'value', 'status'):
                # Assume sensor dataset name is AntennaN/Sensors/dataset and rename it to Antennas/{ant}/dataset
                ant_name = obj.parent.parent.attrs['description'].split(',')[0]
                standardised_name = 'Antennas/%s/%s' % (ant_name,
                                                        name.split('/')[-1])
                cache[standardised_name] = SensorData(obj, standardised_name)

        ants_group.visititems(register_sensor)
        # Use estimated data timestamps for now, to speed up data segmentation
        # This will linearly interpolate pointing coordinates to correlator data timestamps (on access)
        # As long as azimuth is in natural antenna coordinates, no special angle interpolation required
        self.sensor = SensorCache(cache,
                                  data_timestamps,
                                  self.dump_period,
                                  keep=self._time_keep,
                                  props=SENSOR_PROPS,
                                  virtual=VIRTUAL_SENSORS,
                                  aliases=SENSOR_ALIASES)

        # ------ Extract subarrays ------

        ants = [
            katpoint.Antenna(ants_group[group].attrs['description'])
            for group in ants_group
        ]
        self.ref_ant = ants[0].name if not ref_ant else ref_ant
        # Map from (old-style) DBE input label (e.g. '0x') to the new antenna-based input label (e.g. 'ant1h')
        input_label = dict([(ants_group[group]['H'].attrs['dbe_input'],
                             ant.name + 'h')
                            for ant, group in zip(ants, ants_group.keys())
                            if 'H' in ants_group[group]])
        input_label.update(
            dict([(ants_group[group]['V'].attrs['dbe_input'], ant.name + 'v')
                  for ant, group in zip(ants, ants_group.keys())
                  if 'V' in ants_group[group]]))
        # Split DBE input product string into its separate inputs
        split_product = re.compile(r'(\d+[xy])(\d+[xy])')
        # Iterate over map from correlation product index to DBE input product string and convert
        # the latter to pairs of input labels (this assumes that the corrprod indices are sorted)
        corrprods = []
        for corrind, product in corr_group['input_map']:
            match = split_product.match(product)
            if match is None:
                raise BrokenFile(
                    "Unknown DBE input product '%s' in input map (expected e.g. '0x1y')"
                    % (product, ))
            corrprods.append(
                tuple([input_label[inp] for inp in match.groups()]))
        data_cp_len = len(self._scan_groups[0]['data'].dtype)
        if len(corrprods) != data_cp_len:
            raise BrokenFile(
                'Number of baseline labels received from correlator '
                '(%d) differs from number of baselines in data (%d)' %
                (len(corrprods), data_cp_len))
        self.subarrays = [Subarray(ants, corrprods)]
        self.sensor['Observation/subarray'] = CategoricalData(
            self.subarrays, [0, len(data_timestamps)])
        self.sensor['Observation/subarray_index'] = CategoricalData(
            [0], [0, len(data_timestamps)])
        # Store antenna objects in sensor cache too, for use in virtual sensor calculations
        for ant in ants:
            self.sensor['Antennas/%s/antenna' %
                        (ant.name, )] = CategoricalData(
                            [ant], [0, len(data_timestamps)])

        # ------ Extract spectral windows / frequencies ------

        centre_freq = corr_group.attrs['center_frequency_hz']
        num_chans = corr_group.attrs['num_freq_channels']
        data_num_chans = self._scan_groups[0]['data'].shape[1]
        if num_chans != data_num_chans:
            raise BrokenFile(
                'Number of channels received from correlator '
                '(%d) differs from number of channels in data (%d)' %
                (num_chans, data_num_chans))
        channel_width = corr_group.attrs['channel_bandwidth_hz']
        self.spectral_windows = [
            SpectralWindow(centre_freq, channel_width, num_chans, 'poco')
        ]
        self.sensor['Observation/spw'] = CategoricalData(
            self.spectral_windows, [0, len(data_timestamps)])
        self.sensor['Observation/spw_index'] = CategoricalData(
            [0], [0, len(data_timestamps)])

        # ------ Extract scans / compound scans / targets ------

        # Fringe Finder augment does not store antenna activity sensors - use scan + compscan labels as a guess
        scan_labels = [s.attrs.get('label', '') for s in self._scan_groups]
        compscan_labels = [
            s.parent.attrs.get('label', '') for s in self._scan_groups
        ]
        scan_states = [
            _labels_to_state(s, cs)
            for s, cs in zip(scan_labels, compscan_labels)
        ]
        # The scans are already partitioned into groups - use corresponding segments as start events
        self.sensor['Observation/scan_state'] = CategoricalData(
            scan_states, self._segments)
        self.sensor['Observation/scan_index'] = CategoricalData(
            range(len(scan_states)), self._segments)
        # Group scans together based on compscan group name and have one label per compound scan
        compscan = CategoricalData([s.parent.name for s in self._scan_groups],
                                   self._segments)
        compscan.remove_repeats()
        label = CategoricalData(compscan_labels, self._segments)
        label.align(compscan.events)
        self.sensor['Observation/label'] = label
        self.sensor['Observation/compscan_index'] = CategoricalData(
            range(len(label)), label.events)
        # Extract targets from compscan groups, replacing empty or bad descriptions with dummy target
        target = CategoricalData([
            _robust_target(s.parent.attrs.get('target', ''))
            for s in self._scan_groups
        ], self._segments)
        target.align(compscan.events)
        self.sensor['Observation/target'] = target
        self.sensor['Observation/target_index'] = CategoricalData(
            target.indices, target.events)
        # Set up catalogue containing all targets in file, with reference antenna as default antenna
        self.catalogue.add(target.unique_values)
        self.catalogue.antenna = self.sensor['Antennas/%s/antenna' %
                                             (self.ref_ant, )][0]
        # Ensure that each target flux model spans all frequencies in data set if possible
        self._fix_flux_freq_range()

        # Restore original (slow) timestamps so that subsequent sensors (e.g. pointing) will have accurate values
        self.sensor.timestamps = self.timestamps
        # Apply default selection and initialise all members that depend on selection in the process
        self.select(spw=0, subarray=0)
Esempio n. 29
0
    def __init__(self, source, ref_ant='', time_offset=0.0, **kwargs):
        DataSet.__init__(self, source.name, ref_ant, time_offset)
        attrs = source.metadata.attrs

        # ------ Extract timestamps ------

        self.source = source
        self.file = {}
        self.version = '4.0'
        self.dump_period = attrs['int_time']
        num_dumps = len(source.timestamps)
        source.timestamps += self.time_offset
        if source.timestamps[0] < 1e9:
            logger.warning(
                "Data set has invalid first correlator timestamp "
                "(%f)", source.timestamps[0])
        half_dump = 0.5 * self.dump_period
        self.start_time = katpoint.Timestamp(source.timestamps[0] - half_dump)
        self.end_time = katpoint.Timestamp(source.timestamps[-1] + half_dump)
        self._time_keep = np.full(num_dumps, True, dtype=np.bool_)
        all_dumps = [0, num_dumps]

        # Assemble sensor cache
        self.sensor = SensorCache(source.metadata.sensors, source.timestamps,
                                  self.dump_period, self._time_keep,
                                  SENSOR_PROPS, VIRTUAL_SENSORS,
                                  SENSOR_ALIASES)

        # ------ Extract flags ------

        # Internal flag mask overridden whenever _flags_keep is set via select()
        self._flags_select = np.array([255], dtype=np.uint8)
        self._flags_keep = 'all'

        # ------ Extract observation parameters and script log ------

        self.obs_params = attrs['obs_params']
        # Get observation script parameters, with defaults
        self.observer = self.obs_params.get('observer', '')
        self.description = self.obs_params.get('description', '')
        self.experiment_id = self.obs_params.get('experiment_id', '')
        # Extract script log data verbatim (it is not a standard sensor anyway)
        try:
            self.obs_script_log = self.sensor.get(
                'obs_script_log', extract=False)['value'].tolist()
        except KeyError:
            self.obs_script_log = []

        # ------ Extract subarrays ------

        # List of correlation products as pairs of input labels
        corrprods = attrs['bls_ordering']
        # Crash if there is mismatch between labels and data shape (bad labels?)
        if source.data and (len(corrprods) != source.data.shape[2]):
            raise BrokenFile('Number of baseline labels (containing expected '
                             'antenna names) received from correlator (%d) '
                             'differs from number of baselines in data (%d)' %
                             (len(corrprods), source.data.shape[2]))
        # Find all antennas in subarray with valid katpoint Antenna objects
        ants = []
        for resource in attrs['sub_pool_resources'].split(','):
            try:
                ant_description = attrs[resource + '_observer']
                ants.append(katpoint.Antenna(ant_description))
            except (KeyError, ValueError):
                continue
        # Keep the basic list sorted as far as possible
        ants = sorted(ants)
        cam_ants = set(ant.name for ant in ants)
        # Find names of all antennas with associated correlator data
        sdp_ants = set([cp[0][:-1] for cp in corrprods] +
                       [cp[1][:-1] for cp in corrprods])
        # By default, only pick antennas that were in use by the script
        obs_ants = self.obs_params.get('ants')
        # Otherwise fall back to the list of antennas common to CAM and SDP / CBF
        obs_ants = obs_ants.split(',') if obs_ants else list(cam_ants
                                                             & sdp_ants)
        self.ref_ant = obs_ants[0] if not ref_ant else ref_ant

        self.subarrays = subs = [Subarray(ants, corrprods)]
        self.sensor['Observation/subarray'] = CategoricalData(subs, all_dumps)
        self.sensor['Observation/subarray_index'] = CategoricalData([0],
                                                                    all_dumps)
        # Store antenna objects in sensor cache too, for use in virtual sensors
        for ant in ants:
            sensor_name = 'Antennas/%s/antenna' % (ant.name, )
            self.sensor[sensor_name] = CategoricalData([ant], all_dumps)

        # ------ Extract spectral windows / frequencies ------

        # Get the receiver band identity ('l', 's', 'u', 'x')
        band = attrs['sub_band']
        # Populate antenna -> receiver mapping and figure out noise diode
        for ant in cam_ants:
            # Try sanitised version of RX serial number first
            rx_serial = attrs.get('%s_rsc_rx%s_serial_number' % (ant, band), 0)
            self.receivers[ant] = '%s.%d' % (band, rx_serial)
            nd_sensor = '%s_dig_%s_band_noise_diode' % (ant, band)
            if nd_sensor in self.sensor:
                # A sensor alias would be ideal for this but it only deals with suffixes ATM
                new_nd_sensor = 'Antennas/%s/nd_coupler' % (ant, )
                self.sensor[new_nd_sensor] = self.sensor.get(nd_sensor,
                                                             extract=False)
        num_chans = attrs['n_chans']
        bandwidth = attrs['bandwidth']
        centre_freq = attrs['center_freq']
        channel_width = bandwidth / num_chans
        # Continue with different channel count, but invalidate centre freq
        # (keep channel width though)
        if source.data and (num_chans != source.data.shape[1]):
            logger.warning(
                'Number of channels reported in metadata (%d) differs'
                ' from actual number of channels in data (%d) - '
                'trusting the latter', num_chans, source.data.shape[1])
            num_chans = source.data.shape[1]
            centre_freq = 0.0
        product = attrs.get('sub_product', '')
        sideband = 1
        band_map = dict(l='L', s='S', u='UHF', x='X')
        spw_params = (centre_freq, channel_width, num_chans, product, sideband,
                      band_map[band])
        # We only expect a single spectral window within a single v4 data set
        self.spectral_windows = spws = [SpectralWindow(*spw_params)]
        self.sensor['Observation/spw'] = CategoricalData(spws, all_dumps)
        self.sensor['Observation/spw_index'] = CategoricalData([0], all_dumps)

        # ------ Extract scans / compound scans / targets ------

        # Use the activity sensor of reference antenna to partition the data
        # set into scans (and to set their states)
        scan = self.sensor.get(self.ref_ant + '_activity')
        # If the antenna starts slewing on the second dump, incorporate the
        # first dump into the slew too. This scenario typically occurs when the
        # first target is only set after the first dump is received.
        # The workaround avoids putting the first dump in a scan by itself,
        # typically with an irrelevant target.
        if len(scan) > 1 and scan.events[1] == 1 and scan[1] == 'slew':
            scan.events, scan.indices = scan.events[1:], scan.indices[1:]
            scan.events[0] = 0
        # Use labels to partition the data set into compound scans
        try:
            label = self.sensor.get('obs_label')
        except KeyError:
            label = CategoricalData([''], all_dumps)
        # Discard empty labels (typically found in raster scans, where first
        # scan has proper label and rest are empty) However, if all labels are
        # empty, keep them, otherwise whole data set will be one pathological
        # compscan...
        if len(label.unique_values) > 1:
            label.remove('')
        # Create duplicate scan events where labels are set during a scan
        # (i.e. not at start of scan)
        # ASSUMPTION: Number of scans >= number of labels
        # (i.e. each label should introduce a new scan)
        scan.add_unmatched(label.events)
        self.sensor['Observation/scan_state'] = scan
        self.sensor['Observation/scan_index'] = CategoricalData(
            range(len(scan)), scan.events)
        # Move proper label events onto the nearest scan start
        # ASSUMPTION: Number of labels <= number of scans
        # (i.e. only a single label allowed per scan)
        label.align(scan.events)
        # If one or more scans at start of data set have no corresponding label,
        # add a default label for them
        if label.events[0] > 0:
            label.add(0, '')
        self.sensor['Observation/label'] = label
        self.sensor['Observation/compscan_index'] = CategoricalData(
            range(len(label)), label.events)
        # Use the target sensor of reference antenna to set target for each scan
        target = self.sensor.get(self.ref_ant + '_target')
        # Remove initial blank target (typically because antenna starts stopped)
        if len(target) > 1 and target[0] == 'Nothing, special':
            target.events, target.indices = target.events[1:], target.indices[
                1:]
            target.events[0] = 0
        # Move target events onto the nearest scan start
        # ASSUMPTION: Number of targets <= number of scans
        # (i.e. only a single target allowed per scan)
        target.align(scan.events)
        self.sensor['Observation/target'] = target
        self.sensor['Observation/target_index'] = CategoricalData(
            target.indices, target.events)
        # Set up catalogue containing all targets in file, with reference
        # antenna as default antenna
        self.catalogue.add(target.unique_values)
        ref_sensor = 'Antennas/%s/antenna' % (self.ref_ant, )
        self.catalogue.antenna = self.sensor.get(ref_sensor)[0]
        # Ensure that each target flux model spans all frequencies
        # in data set if possible
        self._fix_flux_freq_range()

        # Apply default selection and initialise all members that depend
        # on selection in the process
        self.select(spw=0, subarray=0, ants=obs_ants)
Esempio n. 30
0
 def _before(date):
     return source.timestamps[0] < katpoint.Timestamp(date).secs