def kdp_ukmo(radar,
             phidpfield='uPhiDP',
             rhohvfield='RhoHV',
             FILTER_BINS_1=11,
             FILTER_BINS_2=9,
             METEO_THRESH=0.7,
             RAIN_THRESH=0.85,
             SMOOTH_BINS_1=5,
             SMOOTH_BINS_2=3):

    print "In kdp_ukmo"

    phidp = copy.deepcopy(radar.fields[phidpfield]['data'])
    rhohv = copy.deepcopy(radar.fields[rhohvfield]['data'])
    rays = copy.deepcopy(radar.nrays)
    bins = copy.deepcopy(radar.ngates)
    binlength = radar.range['data'][1] - radar.range['data'][0]
    #print 'Beginning KDP estimation'

    # flags = np.where(rad2.fields['classification']['data']==1,0,1)
    flags = np.zeros((rays, bins))

    # generate non-meteo mask:
    #print 'generating non-meteo mask ...'
    (meteoMask) = kdpfun.generate_meteo_mask(rays, bins, flags, rhohv,
                                             METEO_THRESH)
    radar.add_field_like('uPhiDP', 'meteoMask', meteoMask)

    # remove phi_dp wrap-around:
    #print 'unwrapping phidp ...'
    (phidp_unwrap) = kdpfun.unwrap_phidp(rays, bins, meteoMask, phidp)

    # remove non-meteo data / filter phi_dp:
    #print 'cleaning / filtering phi_dp ...'
    (phidp_meteo) = kdpfun.clean_phidp(rays, bins, phidp_unwrap, meteoMask,
                                       FILTER_BINS_1)

    # generate non-rain mask:
    #print 'generating non-rain mask ...'
    (rainMask) = kdpfun.generate_rain_mask(rays, bins, rhohv, RAIN_THRESH)

    # remove non-rain data / filter phi_dp:
    #print 'removing non-rain components from phidp ...'
    (phidp_rain) = kdpfun.clean_phidp(rays, bins, phidp_meteo, rainMask,
                                      FILTER_BINS_2)

    # smooth phi_dp (twice):
    #print 'smoothing phi_dp ...'
    (phidp_smooth) = kdpfun.smooth_data(rays, bins, phidp_rain, SMOOTH_BINS_1)
    (phidp_smooth) = kdpfun.smooth_data(rays, bins, phidp_smooth,
                                        SMOOTH_BINS_2)
    radar.add_field_like('uPhiDP', 'sPhiDP', phidp_smooth)

    # calculate kdpfun:
    #print 'calculating kdpfun ...'
    (kdp) = kdpfun.calc_kdp_v3(rays, bins, binlength, phidp_smooth, rainMask)

    radar.add_field_like('KDP', 'KDP_UKMO',
                         np.ma.masked_array(data=kdp, mask=phidp.mask))
    print 'KDP_UKMO added to radar object'
Esempio n. 2
0
def altitude_parameter_averaging_qvp_original(radar, elevation, field, azimuth_exclude, verbose=False):
    mask_field = field
    expected_ele = elevation

    try:
        sweep = np.where(radar.elevation['data'] == expected_ele)[0][0] / (radar.nrays / radar.nsweeps)

    except:
        print('Elevation not in sweep', radar.time['units'])
        zero_array = np.zeros((radar.fields[mask_field]['data'].data.shape[1],))
        zero_array[:] = np.nan
        timeofsweep = num2date(radar.time['data'][0],
                               radar.time['units'],
                               radar.time['calendar'])

        return zero_array, zero_array, zero_array, zero_array, timeofsweep
    else:

        if radar.elevation['data'][radar.sweep_start_ray_index['data'][sweep]] == expected_ele:
            #try:
            My_pyart_functions.field_fill_to_nan(radar, mask_field)
            #except:
            #    print('No fill value for:', mask_field)
           
            try:
                sweep_ind = (radar.sweep_start_ray_index['data'][sweep], radar.sweep_end_ray_index['data'][sweep])
                sweep_data = radar.fields[mask_field]['data'][sweep_ind[0]:sweep_ind[1]]
                timeofsweep = num2date(np.nanmean(radar.time['data'][sweep_ind[0]:sweep_ind[1]]),
                                       radar.time['units'],
                                       radar.time['calendar'])
                if mask_field in ['dBuZ', 'dBZ', 'dBuZv', 'dBZv']:
                    sweep_data = np.power(10, sweep_data / 10.0)
                # unfold uPhiDP values
                # remove phi_dp wrap-around:
                #print 'unwrapping phidp ...'
                if mask_field in ['uPhiDP']:
					rays = sweep_data.shape[0]
					bins = sweep_data.shape[1]
					
					
					# METEO_THRESH=0.7 OK for meteo QVP should be lower for Biodar
					METEO_THRESH=0.7
					# flags = np.where(rad2.fields['classification']['data']==1,0,1)
					flags = np.zeros((rays, bins))
					# generate non-meteo mask:
					#print 'generating non-meteo mask ...'
					rhohv = radar.fields['RhoHV']['data'][sweep_ind[0]:sweep_ind[1]]
					(meteoMask) = kdpfun.generate_meteo_mask(rays, bins, flags, rhohv, METEO_THRESH)
					sweep_data = kdpfun.unwrap_phidp(rays, bins, meteoMask, sweep_data)
                summed = np.zeros(sweep_data.shape)
                counted = np.zeros(sweep_data.shape)
                mask = np.ma.masked_invalid(sweep_data).mask
                inv_mask = np.where(mask, 0, 1)
                summed = np.nansum([summed, sweep_data], axis=0)
                counted = np.nansum([counted, inv_mask], axis=0)
                summed = np.where(counted == 0, np.nan, summed)
                counted = np.where(counted == 0, np.nan, counted)
                mean_values = np.nanmean((summed / counted), axis=0)
                std_values = np.nanstd((summed / counted), axis=0)
                if mask_field in ['dBuZ', 'dBZ', 'dBuZv', 'dBZv']:#mask_field == 'dBuZ' or mask_field == 'dBZ':
                    mean_values = 10 * np.log10(mean_values)
                    std_values = 10 * np.log10(std_values)
                observation_count = np.nansum(counted, axis=0)
                if expected_ele == 90.0:
                    altitudes = radar.range['data']
                else:
                    altitudes = radar.fields['scan_altitude']['data'][radar.sweep_start_ray_index['data'][sweep], :]
               
                # clean up the nearest beans influenced by sidelobs
                ranges=radar.range['data']
                mean_values[ranges<400] = np.nan
                
                return altitudes, observation_count, mean_values, std_values, timeofsweep
            except:
                print(radar.time, ' failed for unknown reason')
                zero_array = np.zeros((radar.fields[mask_field]['data'].data.shape[1],))
                zero_array[:] = np.nan
                timeofsweep = num2date(radar.time['data'][0],
                                       radar.time['units'],
                                       radar.time['calendar'])
                return zero_array, zero_array, zero_array, zero_array, timeofsweep

        else:
            print(radar.elevation['data'][radar.sweep_start_ray_index['data'][sweep]])
            zero_array = np.zeros((radar.fields[mask_field]['data'].data.shape[1],))
            zero_array[:] = np.nan
            timeofsweep = num2date(radar.time['data'][0],
                                   radar.time['units'],
                                   radar.time['calendar'])

            return zero_array, zero_array, zero_array, zero_array, timeofsweep
Esempio n. 3
0
def altitude_parameter_meteo_averaging_qvp(radar, elevation, field, azimuth_exclude, METEO_THRESH=0.7):
    mask_field = field
    expected_ele = elevation

    try:
        sweep = np.where(radar.elevation['data'] == expected_ele)[0][0] / (radar.nrays / radar.nsweeps)

    except:
        print('Elevation not in sweep', radar.time['units'])
        zero_array = np.zeros((radar.fields[mask_field]['data'].data.shape[1],))
        zero_array[:] = np.nan
        timeofsweep = num2date(radar.time['data'][0],
                               radar.time['units'],
                               radar.time['calendar'])

        return zero_array, zero_array, zero_array, zero_array, timeofsweep
    else:

        if radar.elevation['data'][radar.sweep_start_ray_index['data'][sweep]] == expected_ele:
            #try:
            My_pyart_functions.field_fill_to_nan(radar, mask_field)
            #except:
            #    print('No fill value for:', mask_field)
           
            try:
                sweep_ind = (radar.sweep_start_ray_index['data'][sweep], radar.sweep_end_ray_index['data'][sweep])
                this_data = radar.fields[mask_field]['data'][sweep_ind[0]:sweep_ind[1]]
                sweep_data = np.fill_like(this_data,np.nan)
                
                
                timeofsweep = num2date(np.nanmean(radar.time['data'][sweep_ind[0]:sweep_ind[1]]),
                                       radar.time['units'],
                                       radar.time['calendar'])  
                                                            
                rays = sweep_data.shape[0]
                bins = sweep_data.shape[1]
                flags = np.zeros((rays, bins))                      
                rhohv = radar.fields['RhoHV']['data'][sweep_ind[0]:sweep_ind[1]]
                (meteoMask) = kdpfun.generate_meteo_mask(rays, bins, flags, rhohv, METEO_THRESH)
                
                snrH = radar.fields['SNR']['data'][sweep_ind[0]:sweep_ind[1]]
                
                snrV = radar.fields['SNRv']['data'][sweep_ind[0]:sweep_ind[1]]
                
                snrMask = np.fill_like(meteoMask,0)
                snrMask[(snrH > 8) & (snrV > 8)] - 1
                
                sweep_data[(meteoMask == 1) & (snrMask == 1)] = this_data[(meteoMask == 1) & (snrMask == 1)]
				
				
                if mask_field in ['dBuZ', 'dBZ', 'dBuZv', 'dBZv']:
					sweep_data[(sweep_data < -10) | (sweep_data > 60)] = np.nan
					sweep_data = np.power(10, sweep_data / 10.0)
                # unfold uPhiDP values
                # remove phi_dp wrap-around:
                #print 'unwrapping phidp ...'
                elif mask_field in ['uPhiDP']:
					sweep_data = kdpfun.unwrap_phidp(rays, bins, meteoMask, sweep_data)
					
                elif mask_field in ['ZDR']:
					sweep_data[(sweep_data < -1.5) | (sweep_data > 5)] = np.nan	
                summed = np.zeros(sweep_data.shape)
                counted = np.zeros(sweep_data.shape)
                mask = np.ma.masked_invalid(sweep_data).mask
                inv_mask = np.where(mask, 0, 1)
                summed = np.nansum([summed, sweep_data], axis=0)
                counted = np.nansum([counted, inv_mask], axis=0)
                summed = np.where(counted == 0, np.nan, summed)
                counted = np.where(counted == 0, np.nan, counted)
                mean_values = np.nanmean((summed / counted), axis=0)
                std_values = np.nanstd((summed / counted), axis=0)
                if mask_field == 'dBuZ' or mask_field == 'dBZ':
                    mean_values = 10 * np.log10(mean_values)
                    std_values = 10 * np.log10(std_values)
                observation_count = np.nansum(counted, axis=0)
                if expected_ele == 90.0:
                    altitudes = radar.range['data']
                else:
                    altitudes = radar.fields['scan_altitude']['data'][radar.sweep_start_ray_index['data'][sweep], :]
                return altitudes, observation_count, mean_values, std_values, timeofsweep
            except:
                print(radar.time, ' failed for unknown reason')
                zero_array = np.zeros((radar.fields[mask_field]['data'].data.shape[1],))
                zero_array[:] = np.nan
                timeofsweep = num2date(radar.time['data'][0],
                                       radar.time['units'],
                                       radar.time['calendar'])
                return zero_array, zero_array, zero_array, zero_array, timeofsweep

        else:
            print(radar.elevation['data'][radar.sweep_start_ray_index['data'][sweep]])
            zero_array = np.zeros((radar.fields[mask_field]['data'].data.shape[1],))
            zero_array[:] = np.nan
            timeofsweep = num2date(radar.time['data'][0],
                                   radar.time['units'],
                                   radar.time['calendar'])

            return zero_array, zero_array, zero_array, zero_array, timeofsweep
Esempio n. 4
0
def altitude_parameter_averaging_qvp(radar, elevation, field, azimuth_exclude, verbose=False):
    
    if verbose:
	    print "in altitude_parameter_averaging_qvp"
		
	    #print "azimuth_exclude"
	    #print azimuth_exclude
	    
    #azimuth_exclude = [45,185]
    mask_field = field
    expected_ele = elevation

    try:
        sweep = np.where(radar.elevation['data'] == expected_ele)[0][0] / (radar.nrays / radar.nsweeps)

    except:
        print('Elevation not in sweep', radar.time['units'])
        zero_array = np.zeros((radar.fields[mask_field]['data'].data.shape[1],))
        zero_array[:] = np.nan
        timeofsweep = num2date(radar.time['data'][0],
                               radar.time['units'],
                               radar.time['calendar'])

        return zero_array, zero_array, zero_array, zero_array, timeofsweep
    else:

        if radar.elevation['data'][radar.sweep_start_ray_index['data'][sweep]] == expected_ele:
            try:
				My_pyart_functions.field_fill_to_nan(radar, mask_field)
            except:print('No fill value for:', mask_field)
           
            #try:
            sweep_ind = (radar.sweep_start_ray_index['data'][sweep], radar.sweep_end_ray_index['data'][sweep])
            #print "sweep_ind.shape = {}".format(sweep_ind.shape)
            #print sweep_ind
            azimuth_data = radar.azimuth['data'][sweep_ind[0]:sweep_ind[1]]
            #print  " azimuth_data  np.where(azimuth_data>=45&azimuth_data<=185)"
            #print  azimuth_data
            #print np.where((azimuth_data==azimuth_exclude))
            sweep_data = radar.fields[mask_field]['data'][sweep_ind[0]:sweep_ind[1]]
            #sweep_data[np.where((azimuth_data>=45)&(azimuth_data<=185))[0]] = np.nan
            
            #print "sweep_data.shape = {}".format(sweep_data.shape)
            timeofsweep = num2date(np.nanmean(radar.time['data'][sweep_ind[0]:sweep_ind[1]]),
								   radar.time['units'],
								   radar.time['calendar'])
            if mask_field in ['dBuZ', 'dBZ', 'dBuZv', 'dBZv']:
				sweep_data = np.power(10, sweep_data / 10.0)
			# unfold uPhiDP values
			# remove phi_dp wrap-around:
			#print 'unwrapping phidp ...'
            if mask_field in ['uPhiDP']:
				rays = sweep_data.shape[0]
				bins = sweep_data.shape[1]
				METEO_THRESH=0.7
				# flags = np.where(rad2.fields['classification']['data']==1,0,1)
				flags = np.zeros((rays, bins))
				# generate non-meteo mask:
				#print 'generating non-meteo mask ...'
				rhohv = radar.fields['RhoHV']['data'][sweep_ind[0]:sweep_ind[1]]
				(meteoMask) = kdpfun.generate_meteo_mask(rays, bins, flags, rhohv, METEO_THRESH)
				sweep_data = kdpfun.unwrap_phidp(rays, bins, meteoMask, sweep_data)
            summed = np.zeros(sweep_data.shape)
            counted = np.zeros(sweep_data.shape)
            #rays = sweep_data.shape[0]
            #bins = sweep_data.shape[1]
            #azimuth_mask = np.ones((rays, bins))
            #azimuth_mask[0:azimuth_exclude[0],:] = 0
            #azimuth_mask[azimuth_exclude[1]:360,:] = 0
            #print radar
            #sweep_data[np.where(azimuth_data[sweep_ind[0]:sweep_ind[1]] in azimuth_exclude)[0]] = np.nan
            
            
            # print "EXCLUDE azimuthes"
            # print "azimuth_data"
            # print azimuth_data.astype(int)
            # print len(azimuth_data)
            # print "np.isin(azimuth_data,azimuth_exclude)"
            # print np.isin(azimuth_data.astype(int),azimuth_exclude)
            # #print "azimuth_exclude"
            # #print azimuth_exclude
            
            # print "np.where(np.isin(azimuth_data.astype(int),azimuth_exclude)==True)"
            # print np.where(np.isin(azimuth_data.astype(int),azimuth_exclude)==True)
            # print len(np.where(np.isin(azimuth_data.astype(int),azimuth_exclude)==True))
            
            # print "sweep_data"
            # print sweep_data
            
            #print "np.where(sweep_data != np.nan)"
            #print np.where(sweep_data != np.nan)
            #print "len(np.where(sweep_data != np.nan)[0])"
            #print len(np.where(sweep_data != np.nan)[0])
            
            
            #print "sweep_data[np.where(sweep_data != np.nan)]"
            #print sweep_data[np.where(sweep_data != np.nan)]
            
           # print "sweep_data[0,0]"
            #print sweep_data[0,0]
            
            #print "np.isnan(sweep_data[0,0])"
            #print np.isnan(sweep_data[0,0])
            
            #print "sweep_data[0,0]==float('nan')"
            #print sweep_data[0,0]==float('NaN')
            
            
            
            
            #print "np.isnan(sweep_data)"
            #print np.isnan(sweep_data)
            
            #print "sweep_data[np.isfinite(sweep_data)]"
            #print sweep_data[np.isfinite(sweep_data)]
            #print len(sweep_data[np.isfinite(sweep_data)])
            
            #print "sweep_data[0,0] = np.nan"
            #sweep_data[0,0] = np.nan
            
            #print "np.isnan(sweep_data[0,0])"
            #print np.isnan(sweep_data[0,0])
            
            #print "sweep_data[0,0]==float('nan')"
            #print sweep_data[0,0]==float('nan')
            #print sweep_data[0,0]== np.nan
            
            
            
            #print "np.where(np.isnan(sweep_data))"
            #print np.where(sweep_data != NaN)
            #print "len(np.where(sweep_data != float('nan'))[0])"
            #print len(np.where(sweep_data != float('nan'))[0])
            
            
            #print "sweep_data[np.where(sweep_data != float('nan'))]"
            #print sweep_data[np.where(sweep_data != float('nan'))]
            
            
            #print "sweep_data[np.where(np.isin(azimuth_data.astype(int),azimuth_exclude)==True)]"
            
            in_excluded = sweep_data[np.where(np.isin(azimuth_data.astype(int),azimuth_exclude)==True)[0],:]
            #print in_excluded[np.isfinite(in_excluded)]
            #print len(in_excluded[np.isfinite(in_excluded)])
            #print "in_excluded.shape"
            #print in_excluded.shape
            #print "np.tile(in_excluded,(sweep_data.shape[1],1))"
            #print np.tile(np.isin(azimuth_data.astype(int),azimuth_exclude).reshape(len(azimuth_data),1),(1,sweep_data.shape[1]))
            #print np.tile(np.isin(azimuth_data.astype(int),azimuth_exclude).reshape(len(azimuth_data),1),(1,sweep_data.shape[1])).shape
            #print "sweep_data.shape[1]"
            #print sweep_data.shape[1]
            
            azimuth_mask = np.tile(np.isin(azimuth_data.astype(int),azimuth_exclude).reshape(len(azimuth_data),1),(1,sweep_data.shape[1]))
            
            
            #print "sweep_data[np.where(np.isin(azimuth_data.astype(int),azimuth_exclude)==False)]"
            
            #out_excluded = sweep_data[np.where(np.isin(azimuth_data.astype(int),azimuth_exclude)==False)[0],:]
            #print out_excluded[np.isfinite(out_excluded)]
            #print len(out_excluded[np.isfinite(out_excluded)])
            
            sweep_data = np.ma.masked_where(azimuth_mask,sweep_data)
            
            #print "np.where(azimuth_data[sweep_ind[0]:sweep_ind[1]] in azimuth_exclude)[0] = {}".format(np.where(azimuth_data[sweep_ind[0]:sweep_ind[1]] in azimuth_exclude))
            #print "np.where(azimuth_data[sweep_ind[0]:sweep_ind[1]] in azimuth_exclude)[0] len = {}".format(len(np.where(azimuth_data[sweep_ind[0]:sweep_ind[1]] in azimuth_exclude)[0]))
            
            #print "inv_mask = {}".format(inv_mask)
            
            mask = np.ma.masked_invalid(sweep_data).mask
            inv_mask = np.where(mask, 0, 1)
            #print "np.where(inv_mask==1) = {}".format(len(np.where(inv_mask==1)[1]))
            #print "np.where(inv_mask==0) = {}".format(len(np.where(inv_mask==0)[1]))
            
            summed = np.nansum([summed, sweep_data], axis=0)
            #print "summed"
            #print summed
            counted = np.nansum([counted, inv_mask], axis=0)
            #print "counted"
            #print counted
            summed = np.where(counted == 0, np.nan, summed)
            counted = np.where(counted == 0, np.nan, counted)
            mean_values = np.nanmean((summed / counted), axis=0)
            std_values = np.nanstd((summed / counted), axis=0)
            if mask_field in ['dBuZ', 'dBZ', 'dBuZv', 'dBZv']:#mask_field == 'dBuZ' or mask_field == 'dBZ':
				mean_values = 10 * np.log10(mean_values)
				std_values = 10 * np.log10(std_values)
            observation_count = np.nansum(counted, axis=0)
            if expected_ele == 90.0:
				altitudes = radar.range['data']
            else:
				altitudes = radar.fields['scan_altitude']['data'][radar.sweep_start_ray_index['data'][sweep], :]
		   
			# clean up the nearest beans influenced by sidelobs
            ranges=radar.range['data']
            mean_values[ranges<400] = np.nan
			
            return altitudes, observation_count, mean_values, std_values, timeofsweep
		# except:
                # print(radar.time, ' failed for unknown reason')
                # zero_array = np.zeros((radar.fields[mask_field]['data'].data.shape[1],))
                # zero_array[:] = np.nan
                # timeofsweep = num2date(radar.time['data'][0],
                                       # radar.time['units'],
                                       # radar.time['calendar'])
                # return zero_array, zero_array, zero_array, zero_array, timeofsweep

        else:
            print(radar.elevation['data'][radar.sweep_start_ray_index['data'][sweep]])
            zero_array = np.zeros((radar.fields[mask_field]['data'].data.shape[1],))
            zero_array[:] = np.nan
            timeofsweep = num2date(radar.time['data'][0],
                                   radar.time['units'],
                                   radar.time['calendar'])