Esempio n. 1
0
def test_can_save_and_load(tmpdir) -> None:
    PROTO_FILE_NAME = str(tmpdir.join("test.proto"))
    JSON_FILE_NAME = str(tmpdir.join("test.json"))
    DOT_FILE_NAME = str(tmpdir.join("test.dot"))

    gamma = Gamma(1.0, 1.0)
    gamma.set_value(2.5)
    # %%SNIPPET_START%% PythonSaveSnippet
    net = BayesNet(gamma.iter_connected_graph())
    metadata = {"Author": "Documentation Team"}

    protobuf_saver = ProtobufSaver(net)
    protobuf_saver.save(PROTO_FILE_NAME, True, metadata)

    json_saver = JsonSaver(net)
    json_saver.save(JSON_FILE_NAME, True, metadata)

    dot_saver = DotSaver(net)
    dot_saver.save(DOT_FILE_NAME, True, metadata)
    # %%SNIPPET_END%% PythonSaveSnippet

    # %%SNIPPET_START%% PythonLoadSnippet
    protobuf_loader = ProtobufLoader()
    new_net_from_proto = protobuf_loader.load(PROTO_FILE_NAME)
    json_loader = JsonLoader()
    new_net_from_json = json_loader.load(JSON_FILE_NAME)
Esempio n. 2
0
def test_sample_throws_if_vertices_in_sample_from_are_missing_labels() -> None:
    sigma = Gamma(1., 1)
    vertex = Gaussian(0., sigma, label="gaussian")

    assert sigma.get_label() is None

    net = BayesNet([sigma, vertex])
    with pytest.raises(ValueError,
                       match=r"Vertices in sample_from must be labelled."):
        samples = sample(net=net, sample_from=net.iter_latent_vertices())
Esempio n. 3
0
def test_probe_for_non_zero_probability_from_bayes_net() -> None:
    gamma = Gamma(1., 1.)
    poisson = Poisson(gamma)

    net = BayesNet([poisson, gamma])

    assert not gamma.has_value()
    assert not poisson.has_value()

    net.probe_for_non_zero_probability(100, KeanuRandom())

    assert gamma.has_value()
    assert poisson.has_value()
Esempio n. 4
0
def net() -> BayesNet:
    with Model() as m:
        m.gamma = Gamma(1., 1.)
        m.exp = Exponential(1.)
        m.cauchy = Cauchy(m.gamma, m.exp)

    return m.to_bayes_net()
Esempio n. 5
0
def tensor_net() -> BayesNet:
    with Model() as m:
        m.gamma = Gamma(
            np.array([1., 1., 1., 1.]).reshape((2, 2)),
            np.array([2., 2., 2., 2.]).reshape((2, 2)))
        m.exp = Exponential(np.array([1., 1., 1., 1.]).reshape((2, 2)))
        m.add = m.gamma + m.exp

    return m.to_bayes_net()
Esempio n. 6
0
def test_can_get_vertices_from_bayes_net(get_method: str, latent: bool,
                                         observed: bool, continuous: bool,
                                         discrete: bool) -> None:
    gamma = Gamma(1., 1.)
    gamma.observe(0.5)

    poisson = Poisson(gamma)
    cauchy = Cauchy(gamma, 1.)

    assert gamma.is_observed()
    assert not poisson.is_observed()
    assert not cauchy.is_observed()

    net = BayesNet([gamma, poisson, cauchy])
    vertex_ids = [vertex.get_id() for vertex in getattr(net, get_method)()]

    if observed and continuous:
        assert gamma.get_id() in vertex_ids
    if latent and discrete:
        assert poisson.get_id() in vertex_ids
    if latent and continuous:
        assert cauchy.get_id() in vertex_ids

    assert len(vertex_ids) == (observed and continuous) + (
        latent and discrete) + (latent and continuous)
Esempio n. 7
0
def test_to_bayes_net_excludes_non_vertices() -> None:
    with Model() as m:
        m.not_a_vertex = 1
        m.vertex = Gamma(0.5, 0.1)

    net = m.to_bayes_net()

    assert isinstance(net, BayesNet)

    net_vertex_ids = [vertex.get_id() for vertex in net.iter_latent_or_observed_vertices()]

    assert len(net_vertex_ids) == 1
    assert m.vertex.get_id() in net_vertex_ids
Esempio n. 8
0
def test_can_save_and_load(tmpdir) -> None:
    PROTO_FILE = str(tmpdir.join("test.proto"))
    JSON_FILE = str(tmpdir.join("test.json"))
    DOT_FILE = str(tmpdir.join("test.dot"))

    gamma = Gamma(1.0, 1.0)
    gamma.set_value(2.5)
    net = BayesNet(gamma.get_connected_graph())
    metadata = {"Team": "GraphOS"}
    protobuf_saver = ProtobufSaver(net)
    protobuf_saver.save(PROTO_FILE, True, metadata)
    json_saver = JsonSaver(net)
    json_saver.save(JSON_FILE, True, metadata)
    dot_saver = DotSaver(net)
    dot_saver.save(DOT_FILE, True, metadata)
    check_dot_file(DOT_FILE)

    protobuf_loader = ProtobufLoader()
    json_loader = JsonLoader()
    new_net_from_proto = protobuf_loader.load(PROTO_FILE)
    check_loaded_net(new_net_from_proto)
    new_net_from_json = json_loader.load(JSON_FILE)
    check_loaded_net(new_net_from_json)
Esempio n. 9
0
def test_to_bayes_net() -> None:
    with Model() as m:
        m.mu = Exponential(1.)
        m.sigma = Gamma(0.5, 0.1)

        m.gaussian = Gaussian(m.mu, m.sigma)

    net = m.to_bayes_net()

    assert isinstance(net, BayesNet)

    net_vertex_ids = [
        vertex.get_id() for vertex in net.get_latent_or_observed_vertices()
    ]

    assert len(net_vertex_ids) == 3
    assert m.mu.get_id() in net_vertex_ids
    assert m.sigma.get_id() in net_vertex_ids
    assert m.gaussian.get_id() in net_vertex_ids
Esempio n. 10
0
def net() -> BayesNet:
    with Model() as m:
        m.gamma = Gamma(1., 1.)
        m.gaussian = Gaussian(0., m.gamma)

    return m.to_bayes_net()
Esempio n. 11
0
def net() -> BayesNet:
    gamma = Gamma(1., 1.)
    exp = Exponential(1.)
    cauchy = Cauchy(gamma, exp)

    return BayesNet(cauchy.get_connected_graph())