def runTest(self): nx, ny, nz, str_f, pt0, pt1, is_array = self.args slice_xyz = common.slices_two_points(pt0, pt1) # generate random source if is_array: shape = common.shape_two_points(pt0, pt1) value = np.random.rand(*shape).astype(np.float32) else: value = np.random.ranf() # instance fields = Fields(0, nx, ny, nz, '', 'single') tfunc = lambda tstep: np.sin(0.03 * tstep) incident = IncidentDirect(fields, str_f, pt0, pt1, tfunc, value) # host allocations eh = np.zeros(fields.ns_pitch, dtype=fields.dtype) # verify eh[slice_xyz] = fields.dtype(value) * fields.dtype(tfunc(1)) fields.update_e() fields.update_h() copy_eh_buf = fields.get_buf(str_f) copy_eh = np.zeros_like(eh) cuda.memcpy_dtoh(copy_eh, copy_eh_buf) original = eh[slice_xyz] copy = copy_eh[slice_xyz] norm = np.linalg.norm(original - copy) self.assertEqual(norm, 0, '%s, %g' % (self.args, norm)) fields.context_pop()
def runTest(self): nx, ny, nz, str_f, pt0, pt1, is_array = self.args slice_xyz = common.slices_two_points(pt0, pt1) # generate random source if is_array: shape = common.shape_two_points(pt0, pt1) value = np.random.rand(*shape).astype(np.float32) else: value = np.random.ranf() # instance fields = Fields(0, nx, ny, nz, '', 'single') tfunc = lambda tstep: np.sin(0.03*tstep) incident = IncidentDirect(fields, str_f, pt0, pt1, tfunc, value) # host allocations eh = np.zeros(fields.ns_pitch, dtype=fields.dtype) # verify eh[slice_xyz] = fields.dtype(value) * fields.dtype(tfunc(1)) fields.update_e() fields.update_h() copy_eh_buf = fields.get_buf(str_f) copy_eh = np.zeros_like(eh) cuda.memcpy_dtoh(copy_eh, copy_eh_buf) original = eh[slice_xyz] copy = copy_eh[slice_xyz] norm = np.linalg.norm(original - copy) self.assertEqual(norm, 0, '%s, %g' % (self.args, norm)) fields.context_pop()
def runTest(self): nx, ny, nz, str_f, pt0, pt1 = self.args slidx = common.slices_two_points(pt0, pt1) str_fs = common.convert_to_tuple(str_f) # instance gpu_devices = common_gpu.gpu_device_list(print_info=False) context = cl.Context(gpu_devices) device = gpu_devices[0] fields = Fields(context, device, nx, ny, nz, 'single') getf = GetFields(fields, str_f, pt0, pt1) # host allocations ehs = common_random.generate_ehs(nx, ny, nz, fields.dtype) eh_dict = dict( zip(['ex', 'ey', 'ez', 'hx', 'hy', 'hz'], ehs) ) for strf, eh in eh_dict.items(): cl.enqueue_copy(fields.queue, fields.get_buf(strf), eh) # verify getf.get_event().wait() for str_f in str_fs: original = eh_dict[str_f][slidx] copy = getf.get_fields(str_f) norm = np.linalg.norm(original - copy) self.assertEqual(norm, 0, '%s, %g' % (self.args, norm))
def runTest(self): nx, ny, nz, str_f, pt0, pt1, is_array = self.args slidx = common.slices_two_points(pt0, pt1) str_fs = common.convert_to_tuple(str_f) # instance gpu_devices = common_gpu.gpu_device_list(print_info=False) context = cl.Context(gpu_devices) device = gpu_devices[0] qtask = QueueTask() fields = Fields(context, device, qtask, nx, ny, nz, '', 'single') setf = SetFields(fields, str_f, pt0, pt1, is_array) # generate random source if is_array: shape = common.shape_two_points(pt0, pt1, len(str_fs)) value = np.random.rand(*shape).astype(fields.dtype) split_value = np.split(value, len(str_fs)) split_value_dict = dict( zip(str_fs, split_value) ) else: value = np.random.ranf() # host allocations ehs = [np.zeros(fields.ns, dtype=fields.dtype) for i in range(6)] eh_dict = dict( zip(['ex', 'ey', 'ez', 'hx', 'hy', 'hz'], ehs) ) gpu_eh = np.zeros(fields.ns_pitch, dtype=fields.dtype) # verify for str_f in str_fs: if is_array: eh_dict[str_f][slidx] = split_value_dict[str_f] else: eh_dict[str_f][slidx] = value setf.set_fields(value) setf.mainf.enqueue_barrier() for str_f in str_fs: cl.enqueue_copy(fields.queue, gpu_eh, fields.get_buf(str_f)) original = eh_dict[str_f] copy = gpu_eh[:,:,fields.slice_z] norm = np.linalg.norm(original - copy) self.assertEqual(norm, 0, '%s, %g' % (self.args, norm))
def runTest(self): nx, ny, nz, str_f, pt0, pt1, is_array = self.args slidx = common.slices_two_points(pt0, pt1) str_fs = common.convert_to_tuple(str_f) # instance fields = Fields(0, nx, ny, nz, '', 'single') setf = SetFields(fields, str_f, pt0, pt1, is_array) # generate random source if is_array: shape = common.shape_two_points(pt0, pt1, len(str_fs)) value = np.random.rand(*shape).astype(fields.dtype) split_value = np.split(value, len(str_fs)) split_value_dict = dict( zip(str_fs, split_value) ) else: value = np.random.ranf() # host allocations ehs = [np.zeros(fields.ns, dtype=fields.dtype) for i in range(6)] eh_dict = dict( zip(['ex', 'ey', 'ez', 'hx', 'hy', 'hz'], ehs) ) gpu_eh = np.zeros(fields.ns_pitch, dtype=fields.dtype) # verify for str_f in str_fs: if is_array: eh_dict[str_f][slidx] = split_value_dict[str_f] else: eh_dict[str_f][slidx] = value setf.set_fields(value) for str_f in str_fs: cuda.memcpy_dtoh(gpu_eh, fields.get_buf(str_f)) original = eh_dict[str_f] copy = gpu_eh[:,:,fields.slice_z] norm = np.linalg.norm(original - copy) self.assertEqual(norm, 0, '%s, %g' % (self.args, norm)) fields.context_pop()
def runTest(self): nx, ny, nz, str_f, pt0, pt1, is_array = self.args slice_xyz = common.slices_two_points(pt0, pt1) # generate random source if is_array: shape = common.shape_two_points(pt0, pt1) value = np.random.rand(*shape).astype(np.float32) else: value = np.random.ranf() # instance gpu_devices = common_gpu.gpu_device_list(print_info=False) context = cl.Context(gpu_devices) device = gpu_devices[0] qtask = QueueTask() fields = Fields(context, device, qtask, nx, ny, nz, '', 'single') tfunc = lambda tstep: np.sin(0.03*tstep) incident = IncidentDirect(fields, str_f, pt0, pt1, tfunc, value) # host allocations eh = np.zeros(fields.ns_pitch, dtype=fields.dtype) # verify eh[slice_xyz] = fields.dtype(value) * fields.dtype(tfunc(1)) fields.update_e() fields.update_h() fields.enqueue_barrier() copy_eh_buf = fields.get_buf(str_f) copy_eh = np.zeros_like(eh) cl.enqueue_copy(fields.queue, copy_eh, copy_eh_buf) original = eh[slice_xyz] copy = copy_eh[slice_xyz] norm = np.linalg.norm(original - copy) self.assertEqual(norm, 0, '%s, %g' % (self.args, norm))
def runTest(self): nx, ny, nz, str_f, pt0, pt1, is_array = self.args slice_xyz = common.slices_two_points(pt0, pt1) # generate random source if is_array: shape = common.shape_two_points(pt0, pt1) value = np.random.rand(*shape).astype(np.float32) else: value = np.random.ranf() # instance gpu_devices = common_gpu.gpu_device_list(print_info=False) context = cl.Context(gpu_devices) device = gpu_devices[0] qtask = QueueTask() fields = Fields(context, device, qtask, nx, ny, nz, '', 'single') tfunc = lambda tstep: np.sin(0.03 * tstep) incident = IncidentDirect(fields, str_f, pt0, pt1, tfunc, value) # host allocations eh = np.zeros(fields.ns_pitch, dtype=fields.dtype) # verify eh[slice_xyz] = fields.dtype(value) * fields.dtype(tfunc(1)) fields.update_e() fields.update_h() fields.enqueue_barrier() copy_eh_buf = fields.get_buf(str_f) copy_eh = np.zeros_like(eh) cl.enqueue_copy(fields.queue, copy_eh, copy_eh_buf) original = eh[slice_xyz] copy = copy_eh[slice_xyz] norm = np.linalg.norm(original - copy) self.assertEqual(norm, 0, '%s, %g' % (self.args, norm))
def runTest(self): ufunc, nx, ny, nz, coeff_use, precision_float, tmax = self.args gpu_devices = common_gpu.gpu_device_list(print_info=False) context = cl.Context(gpu_devices) device = gpu_devices[0] fields = Fields(context, device, nx, ny, nz, coeff_use, precision_float) core = Core(fields) # allocations ns = fields.ns dtype = fields.dtype strf_list = ["ex", "ey", "ez", "hx", "hy", "hz"] ehs = common_update.generate_random_ehs(nx, ny, nz, dtype, ufunc) fields.set_eh_bufs(*ehs) ces, chs = common_update.generate_random_cs(coeff_use, nx, ny, nz, dtype) if "e" in coeff_use: fields.set_ce_bufs(*ces) if "h" in coeff_use: fields.set_ch_bufs(*chs) tmpf = np.zeros(fields.ns_pitch, dtype=dtype) # update if ufunc == "e": for tstep in xrange(0, tmax): fields.update_e() common_update.update_e(ehs, ces) for strf, eh in zip(strf_list, ehs)[:3]: cl.enqueue_copy(fields.queue, tmpf, fields.get_buf(strf)) norm = np.linalg.norm(eh - tmpf[:, :, fields.slice_z]) max_diff = np.abs(eh - tmpf[:, :, fields.slice_z]).max() self.assertEqual(norm, 0, "%s, %s, %g, %g" % (self.args, strf, norm, max_diff)) if fields.pad != 0: if strf == "ez": norm2 = np.linalg.norm(tmpf[:, :, -fields.pad :]) else: norm2 = np.linalg.norm(tmpf[:, :, -fields.pad - 1 :]) self.assertEqual(norm2, 0, "%s, %s, %g, padding" % (self.args, strf, norm2)) elif ufunc == "h": for tstep in xrange(0, tmax): fields.update_h() common_update.update_h(ehs, chs) for strf, eh in zip(strf_list, ehs)[3:]: cl.enqueue_copy(fields.queue, tmpf, fields.get_buf(strf)) norm = np.linalg.norm(eh - tmpf[:, :, fields.slice_z]) max_diff = np.abs(eh - tmpf[:, :, fields.slice_z]).max() self.assertEqual(norm, 0, "%s, %s, %g, %g" % (self.args, strf, norm, max_diff)) if fields.pad != 0: if strf == "hz": norm2 = np.linalg.norm(tmpf[:, :, -fields.pad :]) else: norm2 = np.linalg.norm(tmpf[:, :, -fields.pad :]) self.assertEqual(norm2, 0, "%s, %s, %g, padding" % (self.args, strf, norm2))
def runTest(self): ufunc, nx, ny, nz, coeff_use, precision_float, tmax = self.args gpu_devices = common_gpu.gpu_device_list(print_info=False) context = cl.Context(gpu_devices) device = gpu_devices[0] fields = Fields(context, device, nx, ny, nz, coeff_use, precision_float) core = Core(fields) # allocations ns = fields.ns dtype = fields.dtype strf_list = ['ex', 'ey', 'ez', 'hx', 'hy', 'hz'] ehs = common_update.generate_random_ehs(nx, ny, nz, dtype, ufunc) fields.set_eh_bufs(*ehs) ces, chs = common_update.generate_random_cs(coeff_use, nx, ny, nz, dtype) if 'e' in coeff_use: fields.set_ce_bufs(*ces) if 'h' in coeff_use: fields.set_ch_bufs(*chs) tmpf = np.zeros(fields.ns_pitch, dtype=dtype) # update if ufunc == 'e': for tstep in xrange(0, tmax): fields.update_e() common_update.update_e(ehs, ces) for strf, eh in zip(strf_list, ehs)[:3]: cl.enqueue_copy(fields.queue, tmpf, fields.get_buf(strf)) norm = np.linalg.norm(eh - tmpf[:, :, fields.slice_z]) max_diff = np.abs(eh - tmpf[:, :, fields.slice_z]).max() self.assertEqual( norm, 0, '%s, %s, %g, %g' % (self.args, strf, norm, max_diff)) if fields.pad != 0: if strf == 'ez': norm2 = np.linalg.norm(tmpf[:, :, -fields.pad:]) else: norm2 = np.linalg.norm(tmpf[:, :, -fields.pad - 1:]) self.assertEqual( norm2, 0, '%s, %s, %g, padding' % (self.args, strf, norm2)) elif ufunc == 'h': for tstep in xrange(0, tmax): fields.update_h() common_update.update_h(ehs, chs) for strf, eh in zip(strf_list, ehs)[3:]: cl.enqueue_copy(fields.queue, tmpf, fields.get_buf(strf)) norm = np.linalg.norm(eh - tmpf[:, :, fields.slice_z]) max_diff = np.abs(eh - tmpf[:, :, fields.slice_z]).max() self.assertEqual( norm, 0, '%s, %s, %g, %g' % (self.args, strf, norm, max_diff)) if fields.pad != 0: if strf == 'hz': norm2 = np.linalg.norm(tmpf[:, :, -fields.pad:]) else: norm2 = np.linalg.norm(tmpf[:, :, -fields.pad:]) self.assertEqual( norm2, 0, '%s, %s, %g, padding' % (self.args, strf, norm2))