Esempio n. 1
0
    def runTest(self):
        nx, ny, nz, str_f, pt0, pt1, is_array = self.args
        slice_xyz = common.slices_two_points(pt0, pt1)

        # generate random source
        if is_array:
            shape = common.shape_two_points(pt0, pt1)
            value = np.random.rand(*shape).astype(np.float32)
        else:
            value = np.random.ranf()

        # instance
        fields = Fields(0, nx, ny, nz, '', 'single')

        tfunc = lambda tstep: np.sin(0.03 * tstep)
        incident = IncidentDirect(fields, str_f, pt0, pt1, tfunc, value)

        # host allocations
        eh = np.zeros(fields.ns_pitch, dtype=fields.dtype)

        # verify
        eh[slice_xyz] = fields.dtype(value) * fields.dtype(tfunc(1))
        fields.update_e()
        fields.update_h()

        copy_eh_buf = fields.get_buf(str_f)
        copy_eh = np.zeros_like(eh)
        cuda.memcpy_dtoh(copy_eh, copy_eh_buf)

        original = eh[slice_xyz]
        copy = copy_eh[slice_xyz]
        norm = np.linalg.norm(original - copy)
        self.assertEqual(norm, 0, '%s, %g' % (self.args, norm))

        fields.context_pop()
    def runTest(self):
        nx, ny, nz, str_f, pt0, pt1, is_array = self.args
        slice_xyz = common.slices_two_points(pt0, pt1)

        # generate random source
        if is_array:
            shape = common.shape_two_points(pt0, pt1)
            value = np.random.rand(*shape).astype(np.float32)
        else:
            value = np.random.ranf()

        # instance
        fields = Fields(0, nx, ny, nz, '', 'single')

        tfunc = lambda tstep: np.sin(0.03*tstep)
        incident = IncidentDirect(fields, str_f, pt0, pt1, tfunc, value) 

        # host allocations
        eh = np.zeros(fields.ns_pitch, dtype=fields.dtype)

        # verify
        eh[slice_xyz] = fields.dtype(value) * fields.dtype(tfunc(1))
        fields.update_e()
        fields.update_h()

        copy_eh_buf = fields.get_buf(str_f)
        copy_eh = np.zeros_like(eh)
        cuda.memcpy_dtoh(copy_eh, copy_eh_buf)

        original = eh[slice_xyz]
        copy = copy_eh[slice_xyz]
        norm = np.linalg.norm(original - copy)
        self.assertEqual(norm, 0, '%s, %g' % (self.args, norm))

        fields.context_pop()
Esempio n. 3
0
    def runTest(self):
        nx, ny, nz, str_f, pt0, pt1 = self.args

        slidx = common.slices_two_points(pt0, pt1)
        str_fs = common.convert_to_tuple(str_f)

        # instance
        gpu_devices = common_gpu.gpu_device_list(print_info=False)
        context = cl.Context(gpu_devices)
        device = gpu_devices[0]
        fields = Fields(context, device, nx, ny, nz, 'single')
        getf = GetFields(fields, str_f, pt0, pt1) 
        
        # host allocations
        ehs = common_random.generate_ehs(nx, ny, nz, fields.dtype)
        eh_dict = dict( zip(['ex', 'ey', 'ez', 'hx', 'hy', 'hz'], ehs) )
        for strf, eh in eh_dict.items():
            cl.enqueue_copy(fields.queue, fields.get_buf(strf), eh)

        # verify
        getf.get_event().wait()

        for str_f in str_fs:
            original = eh_dict[str_f][slidx]
            copy = getf.get_fields(str_f)
            norm = np.linalg.norm(original - copy)
            self.assertEqual(norm, 0, '%s, %g' % (self.args, norm))
    def runTest(self):
        nx, ny, nz, str_f, pt0, pt1, is_array = self.args

        slidx = common.slices_two_points(pt0, pt1)
        str_fs = common.convert_to_tuple(str_f)

        # instance
        gpu_devices = common_gpu.gpu_device_list(print_info=False)
        context = cl.Context(gpu_devices)
        device = gpu_devices[0]
        qtask = QueueTask()
        fields = Fields(context, device, qtask, nx, ny, nz, '', 'single')
        setf = SetFields(fields, str_f, pt0, pt1, is_array) 
        
        # generate random source
        if is_array:
            shape = common.shape_two_points(pt0, pt1, len(str_fs))
            value = np.random.rand(*shape).astype(fields.dtype)
            split_value = np.split(value, len(str_fs))
            split_value_dict = dict( zip(str_fs, split_value) )
        else:
            value = np.random.ranf()

        # host allocations
        ehs = [np.zeros(fields.ns, dtype=fields.dtype) for i in range(6)]
        eh_dict = dict( zip(['ex', 'ey', 'ez', 'hx', 'hy', 'hz'], ehs) )
        gpu_eh = np.zeros(fields.ns_pitch, dtype=fields.dtype)

        # verify
        for str_f in str_fs:
            if is_array:
                eh_dict[str_f][slidx] = split_value_dict[str_f]
            else:
                eh_dict[str_f][slidx] = value

        setf.set_fields(value)
        setf.mainf.enqueue_barrier()

        for str_f in str_fs:
            cl.enqueue_copy(fields.queue, gpu_eh, fields.get_buf(str_f))
            original = eh_dict[str_f]
            copy = gpu_eh[:,:,fields.slice_z]
            norm = np.linalg.norm(original - copy)
            self.assertEqual(norm, 0, '%s, %g' % (self.args, norm))
    def runTest(self):
        nx, ny, nz, str_f, pt0, pt1, is_array = self.args

        slidx = common.slices_two_points(pt0, pt1)
        str_fs = common.convert_to_tuple(str_f)

        # instance
        fields = Fields(0, nx, ny, nz, '', 'single')
        setf = SetFields(fields, str_f, pt0, pt1, is_array) 
        
        # generate random source
        if is_array:
            shape = common.shape_two_points(pt0, pt1, len(str_fs))
            value = np.random.rand(*shape).astype(fields.dtype)
            split_value = np.split(value, len(str_fs))
            split_value_dict = dict( zip(str_fs, split_value) )
        else:
            value = np.random.ranf()

        # host allocations
        ehs = [np.zeros(fields.ns, dtype=fields.dtype) for i in range(6)]
        eh_dict = dict( zip(['ex', 'ey', 'ez', 'hx', 'hy', 'hz'], ehs) )
        gpu_eh = np.zeros(fields.ns_pitch, dtype=fields.dtype)

        # verify
        for str_f in str_fs:
            if is_array:
                eh_dict[str_f][slidx] = split_value_dict[str_f]
            else:
                eh_dict[str_f][slidx] = value

        setf.set_fields(value)

        for str_f in str_fs:
            cuda.memcpy_dtoh(gpu_eh, fields.get_buf(str_f))
            original = eh_dict[str_f]
            copy = gpu_eh[:,:,fields.slice_z]
            norm = np.linalg.norm(original - copy)
            self.assertEqual(norm, 0, '%s, %g' % (self.args, norm))

        fields.context_pop()
    def runTest(self):
        nx, ny, nz, str_f, pt0, pt1, is_array = self.args
        slice_xyz = common.slices_two_points(pt0, pt1)

        # generate random source
        if is_array:
            shape = common.shape_two_points(pt0, pt1)
            value = np.random.rand(*shape).astype(np.float32)
        else:
            value = np.random.ranf()

        # instance
        gpu_devices = common_gpu.gpu_device_list(print_info=False)
        context = cl.Context(gpu_devices)
        device = gpu_devices[0]
        qtask = QueueTask()
        fields = Fields(context, device, qtask, nx, ny, nz, '', 'single')

        tfunc = lambda tstep: np.sin(0.03*tstep)
        incident = IncidentDirect(fields, str_f, pt0, pt1, tfunc, value) 

        # host allocations
        eh = np.zeros(fields.ns_pitch, dtype=fields.dtype)

        # verify
        eh[slice_xyz] = fields.dtype(value) * fields.dtype(tfunc(1))
        fields.update_e()
        fields.update_h()
        fields.enqueue_barrier()

        copy_eh_buf = fields.get_buf(str_f)
        copy_eh = np.zeros_like(eh)
        cl.enqueue_copy(fields.queue, copy_eh, copy_eh_buf)

        original = eh[slice_xyz]
        copy = copy_eh[slice_xyz]
        norm = np.linalg.norm(original - copy)
        self.assertEqual(norm, 0, '%s, %g' % (self.args, norm))
Esempio n. 7
0
    def runTest(self):
        nx, ny, nz, str_f, pt0, pt1, is_array = self.args
        slice_xyz = common.slices_two_points(pt0, pt1)

        # generate random source
        if is_array:
            shape = common.shape_two_points(pt0, pt1)
            value = np.random.rand(*shape).astype(np.float32)
        else:
            value = np.random.ranf()

        # instance
        gpu_devices = common_gpu.gpu_device_list(print_info=False)
        context = cl.Context(gpu_devices)
        device = gpu_devices[0]
        qtask = QueueTask()
        fields = Fields(context, device, qtask, nx, ny, nz, '', 'single')

        tfunc = lambda tstep: np.sin(0.03 * tstep)
        incident = IncidentDirect(fields, str_f, pt0, pt1, tfunc, value)

        # host allocations
        eh = np.zeros(fields.ns_pitch, dtype=fields.dtype)

        # verify
        eh[slice_xyz] = fields.dtype(value) * fields.dtype(tfunc(1))
        fields.update_e()
        fields.update_h()
        fields.enqueue_barrier()

        copy_eh_buf = fields.get_buf(str_f)
        copy_eh = np.zeros_like(eh)
        cl.enqueue_copy(fields.queue, copy_eh, copy_eh_buf)

        original = eh[slice_xyz]
        copy = copy_eh[slice_xyz]
        norm = np.linalg.norm(original - copy)
        self.assertEqual(norm, 0, '%s, %g' % (self.args, norm))
Esempio n. 8
0
    def runTest(self):
        ufunc, nx, ny, nz, coeff_use, precision_float, tmax = self.args

        gpu_devices = common_gpu.gpu_device_list(print_info=False)
        context = cl.Context(gpu_devices)
        device = gpu_devices[0]
        fields = Fields(context, device, nx, ny, nz, coeff_use, precision_float)
        core = Core(fields)

        # allocations
        ns = fields.ns
        dtype = fields.dtype
        strf_list = ["ex", "ey", "ez", "hx", "hy", "hz"]

        ehs = common_update.generate_random_ehs(nx, ny, nz, dtype, ufunc)
        fields.set_eh_bufs(*ehs)

        ces, chs = common_update.generate_random_cs(coeff_use, nx, ny, nz, dtype)
        if "e" in coeff_use:
            fields.set_ce_bufs(*ces)
        if "h" in coeff_use:
            fields.set_ch_bufs(*chs)

        tmpf = np.zeros(fields.ns_pitch, dtype=dtype)

        # update
        if ufunc == "e":
            for tstep in xrange(0, tmax):
                fields.update_e()
                common_update.update_e(ehs, ces)

            for strf, eh in zip(strf_list, ehs)[:3]:
                cl.enqueue_copy(fields.queue, tmpf, fields.get_buf(strf))
                norm = np.linalg.norm(eh - tmpf[:, :, fields.slice_z])
                max_diff = np.abs(eh - tmpf[:, :, fields.slice_z]).max()
                self.assertEqual(norm, 0, "%s, %s, %g, %g" % (self.args, strf, norm, max_diff))

                if fields.pad != 0:
                    if strf == "ez":
                        norm2 = np.linalg.norm(tmpf[:, :, -fields.pad :])
                    else:
                        norm2 = np.linalg.norm(tmpf[:, :, -fields.pad - 1 :])
                    self.assertEqual(norm2, 0, "%s, %s, %g, padding" % (self.args, strf, norm2))

        elif ufunc == "h":
            for tstep in xrange(0, tmax):
                fields.update_h()
                common_update.update_h(ehs, chs)

            for strf, eh in zip(strf_list, ehs)[3:]:
                cl.enqueue_copy(fields.queue, tmpf, fields.get_buf(strf))
                norm = np.linalg.norm(eh - tmpf[:, :, fields.slice_z])
                max_diff = np.abs(eh - tmpf[:, :, fields.slice_z]).max()
                self.assertEqual(norm, 0, "%s, %s, %g, %g" % (self.args, strf, norm, max_diff))

                if fields.pad != 0:
                    if strf == "hz":
                        norm2 = np.linalg.norm(tmpf[:, :, -fields.pad :])
                    else:
                        norm2 = np.linalg.norm(tmpf[:, :, -fields.pad :])
                    self.assertEqual(norm2, 0, "%s, %s, %g, padding" % (self.args, strf, norm2))
Esempio n. 9
0
    def runTest(self):
        ufunc, nx, ny, nz, coeff_use, precision_float, tmax = self.args

        gpu_devices = common_gpu.gpu_device_list(print_info=False)
        context = cl.Context(gpu_devices)
        device = gpu_devices[0]
        fields = Fields(context, device, nx, ny, nz, coeff_use,
                        precision_float)
        core = Core(fields)

        # allocations
        ns = fields.ns
        dtype = fields.dtype
        strf_list = ['ex', 'ey', 'ez', 'hx', 'hy', 'hz']

        ehs = common_update.generate_random_ehs(nx, ny, nz, dtype, ufunc)
        fields.set_eh_bufs(*ehs)

        ces, chs = common_update.generate_random_cs(coeff_use, nx, ny, nz,
                                                    dtype)
        if 'e' in coeff_use:
            fields.set_ce_bufs(*ces)
        if 'h' in coeff_use:
            fields.set_ch_bufs(*chs)

        tmpf = np.zeros(fields.ns_pitch, dtype=dtype)

        # update
        if ufunc == 'e':
            for tstep in xrange(0, tmax):
                fields.update_e()
                common_update.update_e(ehs, ces)

            for strf, eh in zip(strf_list, ehs)[:3]:
                cl.enqueue_copy(fields.queue, tmpf, fields.get_buf(strf))
                norm = np.linalg.norm(eh - tmpf[:, :, fields.slice_z])
                max_diff = np.abs(eh - tmpf[:, :, fields.slice_z]).max()
                self.assertEqual(
                    norm, 0,
                    '%s, %s, %g, %g' % (self.args, strf, norm, max_diff))

                if fields.pad != 0:
                    if strf == 'ez':
                        norm2 = np.linalg.norm(tmpf[:, :, -fields.pad:])
                    else:
                        norm2 = np.linalg.norm(tmpf[:, :, -fields.pad - 1:])
                    self.assertEqual(
                        norm2, 0,
                        '%s, %s, %g, padding' % (self.args, strf, norm2))

        elif ufunc == 'h':
            for tstep in xrange(0, tmax):
                fields.update_h()
                common_update.update_h(ehs, chs)

            for strf, eh in zip(strf_list, ehs)[3:]:
                cl.enqueue_copy(fields.queue, tmpf, fields.get_buf(strf))
                norm = np.linalg.norm(eh - tmpf[:, :, fields.slice_z])
                max_diff = np.abs(eh - tmpf[:, :, fields.slice_z]).max()
                self.assertEqual(
                    norm, 0,
                    '%s, %s, %g, %g' % (self.args, strf, norm, max_diff))

                if fields.pad != 0:
                    if strf == 'hz':
                        norm2 = np.linalg.norm(tmpf[:, :, -fields.pad:])
                    else:
                        norm2 = np.linalg.norm(tmpf[:, :, -fields.pad:])
                    self.assertEqual(
                        norm2, 0,
                        '%s, %s, %g, padding' % (self.args, strf, norm2))