Esempio n. 1
0
    def test_time_distributed(self):
        input_time = Input(shape=(None, ), name='input_time')
        emb = Embedding(10, 4, name='embedding')(input_time)
        lstm = LSTM(4, name='lstm')(emb)
        output_time = Dense(1, name='output_time')(lstm)

        model_time = Model(input_time, output_time)
        print(model_time.summary())

        # define full model
        input = Input(shape=(None, None), name='input')
        timesteps = TimeDistributed(model_time, name='timedistributed')(input)
        output = Dense(1)(timesteps)

        model = Model(input, output)

        # create example
        x = np.array([[[1, 2, 1]], [[3, 4, 5]]])

        # get activations
        acts = keract.get_activations(model,
                                      x,
                                      layer_names=['timedistributed'],
                                      nested=True)
        self.assertTrue('timedistributed' in acts)
Esempio n. 2
0
    def test_custom_loss(self):
        x = np.random.rand(100).reshape(100, 1)

        inputs = tf.keras.layers.Input(shape=(1, ))
        d = tf.keras.layers.Dense(11)(inputs)
        d = tf.keras.layers.Dense(1)(d)

        model = tf.keras.Model(inputs=inputs, outputs=d)

        def loss(y_true, y_pred):
            return tf.reduce_mean((y_true - y_pred)**2)

        optimizer = tf.keras.optimizers.Adam()
        model.add_loss(loss(inputs, d))
        model.compile(optimizer)
        keract.get_activations(model, x)
Esempio n. 3
0
    def test_model_in_model(self):
        np.random.seed(123)
        inputs = np.random.uniform(size=(8, 32, 32, 1))
        nested_model = create_network_with_one_subnet()

        # will get the activations of every layer, EXCLUDING subnet layers.
        acts_not_nested = keract.get_activations(nested_model, inputs)
        self.assertTrue('subnet' in acts_not_nested)
        self.assertTrue('subnet/conv2d' not in acts_not_nested)

        # will get the activations of every layer, including subnet.
        acts_nested = keract.get_activations(nested_model, inputs, nested=True)
        self.assertTrue('subnet' not in acts_nested)
        self.assertTrue('subnet/conv2d' in acts_nested)
        self.assertTrue('subnet/max_pooling2d' in acts_nested)
        self.assertTrue('subnet/conv2d_1' in acts_nested)
        self.assertTrue('subnet/max_pooling2d_1' in acts_nested)
Esempio n. 4
0
    def test_multi_inputs_multi_outputs(self):
        inp_a = np.random.uniform(size=(5, 10))
        inp_b = np.random.uniform(size=(5, 10))
        # out_d = np.random.uniform(size=(5, 1))
        # out_e = np.random.uniform(size=(5, 1))

        m1 = get_multi_outputs_model()
        m1.compile(optimizer='adam', loss='mse')
        # m1.fit(x=[inp_a, inp_b], y=[out_d, out_e])
        acts = keract.get_activations(m1, [inp_a, inp_b])
        self.assertListEqual(list(acts['i1'].shape), [5, 10])
        self.assertListEqual(list(acts['i2'].shape), [5, 10])
        self.assertListEqual(list(acts['add'].shape), [5, 10])
        self.assertListEqual(list(acts['o1'].shape), [5, 1])
        self.assertListEqual(list(acts['o2'].shape), [5, 2])
Esempio n. 5
0
    def test_get_activations_from_multi_outputs(self):
        # define model
        inputs = tf.keras.Input(shape=(None, ), name='input')
        emb = tf.keras.layers.Embedding(100, 4, name='embeddding')(inputs)
        lstm = tf.keras.layers.LSTM(4,
                                    return_sequences=True,
                                    return_state=True,
                                    name='lstm')
        lstm_outputs, state_h, state_c = lstm(emb)
        outputs = tf.keras.layers.Dense(1, name='final_dense')(state_h)

        model = tf.keras.Model(inputs, outputs)
        model.summary()

        # create example
        x = np.ones(shape=(16, 10))

        # get activations
        act = keract.get_activations(model, x, layer_names='lstm')['lstm']
        self.assertEqual(len(act), 3)
        self.assertListEqual(list(act[0].shape), [16, 10, 4])
        self.assertListEqual(list(act[1].shape), [16, 4])
        self.assertListEqual(list(act[2].shape), [16, 4])
Esempio n. 6
0
from tensorflow.keras.preprocessing.image import img_to_array
from Models import cifar10_modelfn as cf

# Check for GPUs and set them to dynamically grow memory as needed
# Avoids OOM from tensorflow greedily allocating GPU memory
model = cf.load_weights()

# url = 'https://upload.wikimedia.org/wikipedia/commons/thumb/1/14/Gatto_' \
#       'europeo4.jpg/250px-Gatto_europeo4.jpg'
# response = requests.get(url)
# image = Image.open(BytesIO(response.content))
# image = image.crop((0, 0, 224, 224))

image = Image.open('Visualizations/dog10.png')

image = img_to_array(image)
image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2]))
image = preprocess_input(image)
# yhat = model.predict(image)
# label = decode_predictions(yhat)
# label = label[0][0]
# print('{} ({})'.format(label[1], label[2] * 100))
#
# model.compile(optimizer='adam',
#               loss='categorical_crossentropy',
#               metrics=['accuracy'])
activations = keract.get_activations(model, image)
first = activations.get('block1_conv1')
keract.display_activations(activations, save=True)